April 17, 2025

Why The New York Times’ Essay on ADHD Misses the Mark

This New York Times article, “5 Takeaways from New Research about ADHD”, earns a poor grade for accuracy. Let’s break down their (often misleading and frequently inaccurate) claims about ADHD. 

The Claim: A.D.H.D. is hard to define/ No ADHD Biomarkers exist

The Reality: The claim that ADHD is hard to define “because scientists haven’t found a single biological marker” is misleading at best. While it is true that no biomarker exists, decades of rigorous research using structured clinical interviews and standardized rating scales show that ADHD is reliably diagnosed. Decades of validation research consistently show that ADHD is indeed a biologically-based disorder. One does not need a biomarker to draw that conclusion and recent research about ADHD has not changed that conclusion. 

Additionally, research has in fact confirmed that genetics do play a role in the development of ADHD and several genes associated with ADHD have been identified.  

The Claim: The efficacy of medication wanes over time

The Reality: The article’s statement that medications like Adderall or Ritalin only provide short-term benefits that fade over time is wrong. It relies almost entirely on one study—the Multimodal Treatment Study of ADHD (MTA). In the MTA study, the relative advantage of medication over behavioral treatments diminished after 36 months. This was largely because many patients who had not initially been given medication stopped taking it and many who had only been treated with behavior therapy suddenly began taking medication. The MTA shows that patients frequently switched treatments. It does not overturn other data documenting that these medications are highly effective. Moreover, many longitudinal studies clearly demonstrate sustained benefits of ADHD medications in reducing core symptoms, psychiatric comorbidity, substance abuse, and serious negative outcomes, including accidents, and school dropout rates. A study of nearly 150,000 people with ADHD in Sweden concluded “Among individuals diagnosed with ADHD, medication initiation was associated with significantly lower all-cause mortality, particularly for death due to unnatural causes”. The NY Times’ claim that medications lose their beneficial effects over time ignores compelling evidence to the contrary.

The Claim: Medications don’t help children with ADHD learn 

The Reality: ADHD medications are proven to reliably improve attention, increase time spent on tasks, and reduce disruptive behavior, all critical factors directly linked to better academic performance.The article’s assertion that ADHD medications improve only classroom behavior and do not actually help students learn also oversimplifies and misunderstands the research evidence. While medication alone might not boost IQ or cognitive ability in a direct sense, extensive research confirms significant objective improvements in academic productivity and educational success—contrary to the claim made in the article that the medication’s effect is merely emotional or perceptual, rather than genuinely educational. 

For example, a study of students with ADHD who were using medication intermittingly concluded “Individuals with ADHD had higher scores on the higher education entrance tests during periods they were taking ADHD medication vs non-medicated periods. These findings suggest that ADHD medications may help ameliorate educationally relevant outcomes in individuals with ADHD.”

The Claim: Changing a child’s environment can change his or her symptoms.

The Reality: The Times article asserts that ADHD symptoms are influenced by environmental fluctuations and thus might not have their roots in neurobiology. We have known for many years that the symptoms of ADHD fluctuate with environmental demands. The interpretation of this given by the NY Times is misleading because it confuses symptom variability with underlying causes. Many disorders with well-established biological origins are sensitive to environmental factors, yet their biology remains undisputed. 

For example, hypertension is unquestionably a biologically based condition involving genetic and physiological factors. However, it is also well-known that environmental stressors, dietary

habits, and lifestyle factors can significantly worsen or improve hypertension. Similarly, asthma is biologically rooted in inflammation and airway hyper-reactivity, but environmental triggers such as allergens, pollution, or even emotional stress clearly impact symptom severity. Just as these environmental influences on hypertension or asthma do not negate their biological basis, the responsiveness of ADHD symptoms to environmental fluctuations (e.g., improvements in classroom structure, supportive home life) does not imply that ADHD lacks neurobiological roots. Rather, it underscores that ADHD, like many medical conditions, emerges from the interplay between underlying biological vulnerabilities and environmental influences.

Claim: There is no clear dividing line between those who have A.D.H.D. and those who don’t.

The Reality: This is absolutely and resoundingly false. The article’s suggestion that ADHD diagnosis is arbitrary because ADHD symptoms exist on a continuum rather than as a clear-cut, binary condition is misleading. Although it is true that ADHD symptoms—like inattention, hyperactivity, and impulsivity—do vary continuously across the population, the existence of this continuum does not make the diagnosis arbitrary or invalidate the disorder’s biological basis. Many well-established medical conditions show the same pattern. For instance, hypertension (high blood pressure) and hypercholesterolemia (high cholesterol) both involve measures that are continuously distributed. Blood pressure and cholesterol levels exist along a continuum, yet clear diagnostic thresholds have been carefully established through decades of clinical research. Their continuous distribution does not lead clinicians to question whether these conditions have biological origins or whether diagnosing an individual with hypertension or hypercholesterolemia is arbitrary. Rather, it underscores that clinical decisions and diagnostic thresholds are established using evidence about what levels lead to meaningful impairment or increased risk of negative health outcomes. Similarly, the diagnosis of ADHD has been meticulously defined and refined over many decades using extensive empirical research, structured clinical interviews, and validated rating scales. The diagnostic criteria developed by experts carefully delineate the point at which symptoms become severe enough to cause significant impairment in an individual’s daily functioning. Far from being arbitrary, these thresholds reflect robust scientific evidence that individuals meeting these criteria face increased risks for the serious impairments in life including accidents, suicide and premature death. 

The existence of milder forms of ADHD does not undermine the validity of the diagnosis; rather, it emphasizes the clinical reality that people experience varying degrees of symptom severity.

Moreover, acknowledging variability in severity has always been a core principle in medicine. Clinicians routinely adjust treatments to meet individual patient needs. Not everyone diagnosed with hypertension receives identical medication regimens, nor does everyone with elevated cholesterol get prescribed the same intervention. Similarly, people with ADHD receive personalized treatment plans tailored to the severity of their symptoms, their specific impairments, and their individual circumstances. This personalization is not evidence of arbitrariness; it is precisely how evidence-based medicine is practiced. In sum, the continuous nature of ADHD symptoms is fully compatible with a biologically-based diagnosis that has substantial evidence for validity, and acknowledging symptom variability does not render diagnosis arbitrary or diminish its clinical importance.

In sum, readers seeking a balanced, evidence-based understanding of ADHD deserve clearer, more careful reporting. By overstating diagnostic uncertainty, selectively interpreting research about medication efficacy, and inaccurately portraying the educational benefits of medication, this article presents an overly simplistic, misleading picture of ADHD.

Li L, Zhu N, Zhang L, et al. ADHD Pharmacotherapy and Mortality in Individuals With ADHD. JAMA. 2024;331(10):850–860. doi:10.1001/jama.2024.0851

Lu Y, Sjölander A, Cederlöf M, et al. Association Between Medication Use and Performance on Higher Education Entrance Tests in Individuals With Attention-Deficit/Hyperactivity Disorder. JAMA Psychiatry. 2017;74(8):815–822. doi:10.1001/jamapsychiatry.2017.1472

Related posts

News Tuesday: Fidgeting and ADHD

A recent study delved into the connection between fidgeting and cognitive performance in adults with Attention-Deficit/Hyperactivity Disorder. Recognizing that hyperactivity often manifests as fidgeting, the researchers sought to understand its role in attention and performance during cognitively demanding tasks. They designed a framework to quantify meaningful fidgeting variables using actigraphy devices.

(Note: Actigraphy is a non-invasive method of monitoring human rest/activity cycles. It involves the use of a small, wearable device called an actigraph or actimetry sensor, typically worn on the wrist, similar to a watch. The actigraph records movement data over extended periods, often days to weeks, to track sleep patterns, activity levels, and circadian rhythms. In this study, actigraphy devices were used to measure fidgeting by recording the participants' movements continuously during the cognitive task. This data provided objective, quantitative measures of fidgeting, allowing the researchers to analyze its relationship with attention and task performance.)

The study involved 70 adult participants aged 18-50, all diagnosed with ADHD. Participants underwent a thorough screening process, including clinical interviews and ADHD symptom ratings. The analysis revealed that fidgeting increased during correct trials, particularly in participants with consistent reaction times, suggesting that fidgeting helps sustain attention. Interestingly, fidgeting patterns varied between early and later trials, further highlighting its role in maintaining focus over time.

Additionally, a correlation analysis validated the relevance of the newly defined fidget variables with ADHD symptom severity. This finding suggests that fidgeting may act as a compensatory mechanism for individuals with ADHD, aiding in their ability to maintain attention during tasks requiring cognitive control.

This study provides valuable insights into the role of fidgeting in adults with ADHD, suggesting that it may help sustain attention during challenging cognitive tasks. By introducing and validating new fidget variables, the researchers hope to standardize future quantitative research in this area. Understanding the compensatory role of fidgeting can lead to better management strategies for ADHD, emphasizing the potential benefits of movement for maintaining focus.

July 16, 2024

What is Evidenced-Based Medicine?

What is Evidenced-Based Medicine?

With the growth of the Internet, we are flooded with information about attention deficit hyperactivity disorder from many sources, most of which aim to provide useful and compelling "facts" about the disorder.  But, for the cautious reader, separating fact from opinion can be difficult when writers have not spelled out how they have come to decide that the information they present is factual. 

My blog has several guidelines to reassure readers that the information they read about ADHD is up-to-date and dependable. They are as follows:

Nearly all the information presented is based on peer-reviewed publications in the scientific literature about ADHD. "Peer-reviewed" means that other scientists read the article and made suggestions for changes and approved that it was of sufficient quality for publication. I say "nearly all" because in some cases I've used books or other information published by colleagues who have a reputation for high-quality science.

When expressing certainty about putative facts, I am guided by the principles of evidence-based medicine, which recognizes that the degree to which we can be certain about the truth of scientific statements depends on several features of the scientific papers used to justify the statements, such as the number of studies available and the quality of the individual studies. For example, compare these two types of studies.  One study gives drug X to 10 ADHD patients and reported that 7 improved.  Another gave drug Y to 100 patients and a placebo to 100 other patients and used statistics to show that the rate of improvement was significantly greater in the drug-treated group. The second study is much better and much larger, so we should be more confident in its conclusions. The rules of evidence are fairly complex and can be viewed at the Oxford Center for Evidenced Based Medicine (OCEBM;http://www.cebm.net/).


The evidenced-based approach incorporates two types of information: a) the quality of the evidence and b) the magnitude of the treatment effect. The OCEBM levels of evidence quality are defined as follows (higher numbers are better:

  1. Mechanism-based reasoning.  For example, some data suggest that oxidative stress leads to ADHD, and we know that omega-3 fatty acids reduce oxidative stress. So there is a reasonable mechanism whereby omega-3 therapy might help ADHD people.
  2. Studies of one or a few people without a control group, or studies that compare treated patients to those that were not treated in the past.

Non-randomized, controlled studies.    In these studies, the treatment group is compared to a group that receives a placebo treatment, which is a fake treatment not expected to work.  

  1. Non-randomized means that the comparison might be confounded by having placed different types of patients in the treatment and control groups.
  2. A single randomized trial.  This type of study is not confounded.
  3. Systematic review and meta-analysis of randomized trials. This means that many randomized trials have been completed and someone has combined them to reach a more accurate conclusion.

It is possible to have high-quality evidence proving that a treatment works but the treatment might not work very well. So it is important to consider the magnitude of the treatment effect, also called the "effect size" by statisticians. For ADHD, it is easiest to think about ranking treatments on a ten-point scale. The stimulant medications have a quality rating of 5 and also have the strongest magnitude of effect, about 9 or 10.Omega-3 fatty acid supplementation 'works' with a quality rating of 5, but the score for the magnitude of the effect is only 2, so it doesn't work very well. We have to take into account patient or parent preferences, comorbid conditions, prior response to treatment, and other issues when choosing a treatment for a specific patient, but we can only use an evidence-based approach when deciding which treatments are well-supported as helpful for a disorder.

April 23, 2021

ADHD Increases Risky Decision Making: Evidence from a Meta-Analysis

ADHD Increases Risky Decision Making: Evidence from a Meta-Analysis

Adults with ADHD are more likely to have accidents, drive unsafely, have unsafe sex, and abuse substances. These 'real world' impairments suggest that people with ADHD may be predisposed to making risky decisions. Many studies have attempted to address this, but it is only recently that their results have been aggregated into a systematic review and meta-analysis.  This paper by Dekkers and colleagues reports 37 laboratory studies of risky decision-making that studied a total of 1175 ADHD patients and 1222 controls. In these laboratory tasks, research participants are given a task to complete which requires that they make choices that have varying degrees of risk and reward. Using the results of such experiments, researchers can score the degree to which participants make risky decisions. When Dekkers and colleagues analyzed the 37 studies together, they found substantial evidence that ADHD people are more likely to make risky decisions than people without ADHD. The tendency to make risky decisions was greatest for those who, in addition to having ADHD, also had conduct or oppositional disorders, which both have features that indicate antisocial behavior and aggressiveness. We can not tell from these studies why ADHD patients make risky decisions. One explanation is that it is simply the impulsivity of ADHD people that leads to rash, unwise decisions. Another theory postulates that risky decisions reflect deficits in one's sensitivity to rewards and punishments. If we are very motivated by reward and not aware of or affected by the possibility of punishment, then risky decisions will be common. The studies analyzed in the meta-analysis were not designed to demonstrate a link between risky decision-making in the lab and the real world, risky decisions that lead to accidents, and other outcomes. It is reasonable to hypothesize such a link, which is why clinicians should consider risky decision-making when planning treatments.  If you suspect deficits in this area, it will not change your approach to pharmacologic treatment but, given the potential adverse consequences of risky decisions, you should consider referring such patients to cognitive behavior therapy for adult ADHD as this talk therapy may be able to teach ADHD adults how to cope with their decision-making deficits.

May 25, 2021

Oppositional Defiant Disorder, Autism, and ADHD: New Research Examines the Connection

Oppositional Defiant Disorder (ODD)—a pattern of chronic irritability, anger, arguing, or defiance—is one of the most challenging behavioral conditions families and clinicians face. 

A new study involving 2,400 children ages 3–17 offers one of the clearest pictures yet. Using parent-reported data from the Pediatric Behavior Scale, researchers compared how often ODD appears in Autism spectrum disorder (ASD), ADHD-Combined presentation (ADHD-C), ADHD-Inattentive presentation (ADHD-I), and those with both ASD and ADHD.

Results

ADHD-Combined + ODD: The Highest-Risk Group

Children with ADHD-Combined presentation show both hyperactivity/impulsivity and inattention.  They had the highest ODD rates of any single diagnosis: 53% of kids with ADHD-Combined met criteria for ODD.

But when autism was added to ADHD-Combined, the prevalence jumped to 62%. This group also had the highest overall ODD scores, suggesting more severe or more impairing symptoms. 

This synergy matters: while autism alone increases ODD risk, the presence of ADHD-Combined is what pushes prevalence into the majority range. Other groups showed lower, but still significant, rates of ODD:

  • Autism + ADHD-Inattentive: 28%
  • Autism Only: 24%
  • ADHD-Inattentive Only: 14%

These findings echo what clinicians often see: children with inattentive ADHD, while struggling significantly with attention and learning, tend to show fewer behavioral conflict patterns than those with hyperactive/impulsive symptoms.

It is important to note that ODD is considered to have two main components. Across all diagnostic groups, ODD consistently broke down into these two components: either Irritable/Angry (emotion-based) or Oppositional/Defiant (behavior-based). But the balance between these components differed depending on diagnosis. Notably, Autism + ADHD-Combined showed higher levels of the irritable/angry component than ADHD-Combined alone. The oppositional/defiant component did not differ much between groups. This suggests that autism elevates the emotional side of ODD more than the behavioral side, which is important for clinicians to note before tailoring interventions.

Understanding ADHD , ASD, & Comorbidity:

The study notes that autism, ADHD, and ODD often cluster together, with 55–90% comorbidity in some combinations.

As the authors explain, The high co-occurrence of ADHD-Combined in autism (80% in our study) largely explains the high prevalence of ODD in autism.” 

Clinical Implications: Why This Study Matters

The researchers point to a straightforward recommendation: clinicians shouldn’t evaluate these conditions in isolation. A child referred for autism concerns might also be struggling with ADHD. A child referred for ADHD might have undiagnosed ODD. And ignoring one disorder can undermine treatment for the others.

Evidence-based interventions (behavioral therapy, parent training, school supports, and/or medication) can reduce symptoms across all three diagnoses while improving long-term outcomes, including overall quality of life.

November 21, 2025

What Sleep Patterns Reveal About Mental Health: A Look at New Research

Background:

Sleep is more than simple rest. When discussing sleep, we tend to focus on the quantity rather than the quality,  how many hours of sleep we get versus the quality or depth of sleep. Duration is an important part of the picture, but understanding the stages of sleep and how certain mental health disorders affect those stages is a crucial part of the discussion. 

Sleep is an active mental process where the brain goes through distinct phases of complex electrical rhythms. These phases can be broken down into non-rapid eye movement (NREM) and rapid eye movement (REM). The non-rapid eye movement phase consists of three stages of the four stages of sleep, referred to as N1, N2(light sleep), and N3(deep sleep). N4 is the REM phase, during which time vivid dreaming typically occurs. 

Two of the most important measurable brain rhythms occur during non-rapid eye movement (NREM) sleep. These electrical rhythms are referred to as slow waves and sleep spindles. Slow waves reflect deep, restorative sleep, while spindles are brief bursts of brain activity that support memory and learning.

The Study: 

A new research review has compiled data on how these sleep oscillations differ across psychiatric conditions. The findings suggest that subtle changes in nightly brain rhythms may hold important clues about a range of disorders, from ADHD to schizophrenia.

The Results:

ADHD: Higher Spindle Activity, Mixed Slow-Wave Findings

People with ADHD showed increased slow-spindle activity, meaning those brief bursts of NREM activity were more frequent or stronger than in people without ADHD. Why this happens isn’t fully understood, but it may reflect differences in how the ADHD brain organizes information during sleep. Evidence for slow-wave abnormalities was mixed, suggesting that deep sleep disruption is not a consistent hallmark of ADHD.

Autism: Inconsistent Patterns, but Some Signs of Lower Sleep Amplitude

Among individuals with autism spectrum disorder (ASD), results were less consistent. However, some studies pointed to lower “spindle chirp” (the subtle shift in spindle frequency over time) and reduced slow-wave amplitude. Lower amplitude suggests that the brain’s deep-sleep signals may be weaker or less synchronized. Researchers are still working to understand how these patterns relate to sensory processing, learning differences, or daytime behavior.

Depression: Lower Slow-Wave and Spindle Measures—Especially With Medication

People with depression tended to show reduced slow-wave activity and fewer or weaker sleep spindles, but this pattern appeared most strongly in patients taking antidepressant medications. Since antidepressants can influence sleep architecture, researchers are careful not to overinterpret the changes.  Nevertheless, these changes raise interesting questions about how both depression and its treatments shape the sleeping brain.

PTSD: Higher Spindle Frequency Tied to Symptoms

In post-traumatic stress disorder (PTSD), the trend moved in the opposite direction. Patients showed higher spindle frequency and activity, and these changes were linked to symptom severity which suggests that the brain may be “overactive” during sleep in ways that relate to hyperarousal or intrusive memories. This strengthens the idea that sleep physiology plays a role in how traumatic memories are processed.

Psychotic Disorders: The Most Consistent Sleep Signature

The clearest and most reliable findings emerged in psychotic disorders, including schizophrenia. Across multiple studies, individuals showed: Lower spindle density (fewer spindles overall), reduced spindle amplitude and duration, correlations with symptom severity, and cognitive deficits.

Lower slow-wave activity also appeared, especially in the early phases of illness. These results echo earlier research suggesting that sleep spindles, which are generated by thalamocortical circuits, might offer a window into the neural disruptions that underlie psychosis.

The Take-Away:

The review concludes with a key message: While sleep disturbances are clearly present across psychiatric conditions, the field needs larger, better-standardized, and more longitudinal studies. With more consistent methods and longer follow-ups, researchers may be able to determine whether these oscillations can serve as reliable biomarkers or future treatment targets.

For now, the take-home message is that the effects of these mental health disorders on sleep are real and measurable.

Population Study Links ADHD Medication with Reduced Criminality, Suicides, Automotive Crashes, Substance Abuse

Many studies have shown that ADHD is associated with increased risks of suicidal behavior, substance misuse, injuries, and criminality. As we often discuss in our blogs, treatments for ADHD include medication and non-medication options, such as CBT (Cognitive Behavioral Therapy). While non-drug approaches are often used for young children or mild cases of ADHD, medications – both stimulants and non-stimulants – are common for adolescents and adults. 

Global prescriptions for ADHD drugs have risen significantly in recent years, raising questions about their safety and effectiveness. Randomized controlled trials have demonstrated that medication can help reduce the core symptoms of ADHD. However, research from these trials still offers limited or inconclusive insights into wider and more significant clinical outcomes, such as suicidal behavior and substance use disorder.

An international study team conducted a nationwide population study using the Swedish national registers. Sweden has a single-payer national health insurance system, which covers nearly every resident, enabling such studies. The researchers examined all Swedish residents aged 6 to 64 who received their first ADHD diagnosis between 2007 and 2018. Analyses of criminal behavior and transport accidents focused on a subgroup aged 15 to 64, since individuals in Sweden must be at least 15 years old to be legally accountable for crimes or to drive.

The team controlled for confounding factors, including demographics (age at ADHD diagnosis, calendar year, sex, country of birth, highest education (using parental education for those under 25), psychiatric and physical diagnoses, dispensations of psychotropic drugs, and health care use (outpatient visits and hospital admissions for both psychiatric and non-psychiatric reasons).

Time-varying covariates from the previous month covered diagnoses, medication dispensations, and healthcare use. During the study, ADHD treatments licensed in Sweden included amphetamine, atomoxetine, dexamphetamine, guanfacine, lisdexamphetamine, and methylphenidate.

After accounting for covariates, individuals diagnosed with ADHD who received medication treatment showed better outcomes than those who did not. Specifically:

-Suicidal behaviors dropped by roughly 15% in both first-time and recurrent cases.

-Initial criminal activity decreased by 13%, with repeated offences falling by 25%.

-Substance abuse initiation declined by 15%, while recurring substance abuse was reduced

by 25%.

-First automotive crashes were down 12%, and subsequent crashes fell by 16%.

There was no notable reduction in first-time accidental injuries, and only a marginally significant 4% decrease in repeated injuries.

The team concluded, “Drug treatment for ADHD was associated with beneficial effects in reducing the risks of suicidal behaviours, substance misuse, transport accidents, and criminality, but not accidental injuries when considering first event rate. The risk reductions were more pronounced for recurrent events, with reduced rates for all five outcomes.”