July 8, 2025

Norwegian Population Study Finds ADHD Associated with Much Higher Odds of Contact with Child Welfare Services

Background:

This nationwide population study by a Norwegian team aimed to evaluate the relationship between ADHD and various types of child welfare services contacts over a long-term period of up to 18 years among children and adolescents aged 5 to 18 years diagnosed with ADHD, in comparison to the general population within the same age group. 

Norway has a single-payer national health insurance system that fully covers virtually the entirety of its population. In combination with a system of national population and health registers, this facilitates nationwide population studies, overcoming the limitations of relying on population sampling. 

Study:

The study population included all 8,051 children and adolescents aged 5 to 18 who were diagnosed with ADHD for the first time in the Norwegian Patient Registry between 2009 and 2011. 

The study also included a comparison sample of 75,184 children and adolescents aged 5–18 with no child welfare services contact during 2009–2011. 

The interventions delivered by child welfare services in Norway are largely divided into two primary categories: supportive intervention and out-of-home placement. 

Supportive interventions include improving parenting skills, promoting child development, providing supervision and control, facilitating cooperation with other services, assessments and treatments by other institutions, and offering housing support. 

Norway uses foster homes or child welfare institutions as a last resort. When supportive interventions fail to meet the child’s needs, the child welfare services can temporarily place the child in these facilities. If parents disagree, the county social welfare board decides based on a municipal request. 

The team adjusted for potential confounders: sex, age, parental socioeconomic status (father’s and mother’s education and income level), and marital status. 

Results:

With these adjustments, children and adolescents diagnosed with ADHD were over six times more likely to have any contact with child welfare services than their general population peers. This was equally true for males and females.  

Children and adolescents diagnosed with ADHD were also over six times more likely to receive supportive interventions from child welfare services. Again, there were no differences between males and females. 

Finally, children and adolescents diagnosed with ADHD were roughly seven times more likely to have an out-of-home placement than their general population peers. For males this rose to eight times more likely. 

Conclusion:

The team concluded, “This population-based study provides robust evidence of a higher rate and strong association between ADHD and contact with CWS [Child Welfare Service] compared to the general population in Norway.” 

Ashmita Chaulagain, Tarjei Widding-Havneraas, Ingvild Lyhmann, Anne Halmøy, Ingvar Bjelland, and Arnstein Mykletun, “Lifetime Contacts with Child Welfare Services among Children and Adolescents with ADHD: A Population-Based Registry Study,” Child Psychiatry & Human Development (2025), https://doi.org/10.1007/s10578-025-01857-9

Related posts

No items found.

Meta-analysis of Non-invasive Brain Stimulation Finds Limited Evidence of Efficacy

Background: 

Pharmacotherapies, such as methylphenidate, are highly effective for short-term ADHD management, but issues remain with medication tolerability and adherence. Some patients experience unwanted side effects from stimulant medications, leaving them searching for alternative ADHD treatments. Alternative treatments such as cognitive training, behavioral therapies, psychological interventions, neurofeedback, and dietary changes have, so far, shown limited success. Thus, there is a critical need for non-pharmacological options that boost neurocognitive performance and address core ADHD symptoms.

First— What Are NIBS (Non-Invasive Brain Stimulation) Techniques?

Non-invasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), transcranial alternating current stimulation (tACS), and repetitive transcranial magnetic stimulation (rTMS) are generating growing attention within the scientific community. 

NIBS techniques are methods that use external stimulation, such as magnets or electrical currents, to affect brain activity without any invasive procedures. In transcranial alternating current stimulation (tACS), for example, small electrodes are placed on the scalp of the patient, and a weak electrical current is administered. 

The theory behind these techniques is that when a direct current is applied between two or more electrodes placed on specific areas of the head, it makes certain neurons more or less likely to fire. This technique has been successfully used to treat conditions like depression and anxiety, and to aid recovery from stroke or brain injury. 

The Study: 

Previous meta-analyses have produced conflicting indications of efficacy. A Chinese research team consisting of sports and rehabilitative medicine professionals has just published a network meta-analysis to explore this further, through direct comparison of five critical outcome domains: inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity and impulsivity.

To be included, randomized controlled trials needed to have participants diagnosed with ADHD, use sham control groups, and assess ADHD symptoms and executive functions – such as inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity, and impulsivity – using standardized tests.

A total of thirty-seven studies encompassing 1,615 participants satisfied the inclusion criteria. It is worth noting, however, that the authors did not specify the number of randomized controlled trials nor the number of participants included in each arm of the network meta-analysis.

Furthermore, the team stated, “We checked for potential small study effects and publication bias by conducting comparison-adjusted funnel plots,” but did not share their findings. They also did not provide information on outcome variation (heterogeneity) among the RCTs.

Results:

Ultimately, none of the interventions produced significant improvements in ADHD symptoms, whether in inattention symptoms or hyperactivity/impulsivity symptoms.  Likewise, none of the interventions produced significant improvements in inhibitory control. Some tDCS interventions enhanced working memory and cognitive flexibility, but details about trial numbers and participants were missing. The team concluded, “none of the NIBS interventions significantly improved inhibitory control compared to sham controls. … In terms of working memory, anodal tDCS over the left DLPFC plus cathodal tDCS over the right DLPFC … and anodal tDCS over the right inferior frontal cortex (rIFC) plus cathodal tDCS over the right supraorbital area ... were associated with significant improvements compared to sham stimulation. For cognitive flexibility, only anodal tDCS over the left DLPFC plus cathodal tDCS over the right supraorbital area demonstrated a statistically significant benefit relative to sham. ... Compared to the sham controls, none of the NIBS interventions significantly improved inattention. ... Compared to the sham controls, none of the NIBS interventions significantly improved hyperactivity and impulsivity.”

How Should We Interpret These Results?

In a word, skeptically.

If one were to read just the study’s abstract, which states, “The dual-tDCS and a-tDCS may be considered among the preferred NIBS interventions for improving cognitive function in ADHD”, it might seem that the takeaway from this study is that this combination of brain stimulation techniques might be a viable treatment option for those with ADHD. Upon closer inspection, however, the results do not suggest that any of these methods significantly improve ADHD symptoms. Additionally, this study suffers from quite a few methodological flaws, so any results should be viewed critically.

October 31, 2025

Meta-analysis of Transcranial Direct Current Stimulation Still Yields Little Sign of Efficacy

Background:

Despite recommendations for combined pharmacological and behavioral treatment in childhood ADHD, caregivers may avoid these options due to concerns about side effects or the stigma that still surrounds stimulant medications. Alternatives like psychosocial interventions and environmental changes are limited by questionable effectiveness for many patients. Increasingly, patients and caregivers are seeking other therapies, such as neuromodulation – particularly transcranial direct current stimulation (tDCS). 

tDCS seeks to enhance neurocognitive function by modulating cognitive control circuits with low-intensity scalp currents. There is also evidence that tDCS can induce neuroplasticity. However, results for ADHD symptom improvement in children and adolescents are inconsistent. 

The Method:

To examine the evidence more rigorously, a Taiwanese research team conducted a systematic search focusing exclusively on randomized controlled trials (RCTs) that tested tDCS in children and adolescents diagnosed with ADHD. They included only studies that used sham-tDCS as a control condition – an essential design feature that prevents participants from knowing whether they received the active treatment, thereby controlling for placebo effects. 

The Results:

Meta-analysis of five studies combining 141 participants found no improvement in ADHD symptoms for tDCS over sham-TDCS. That held true for both the right and left prefrontal cortex. There was no sign of publication bias, nor of variation (heterogeneity) in outcomes among the RCTs.  

Meta-analysis of six studies totaling 171 participants likewise found no improvement in inattention symptoms, hyperactivity symptoms, or impulsivity symptoms for tDCS over sham-TDCS. Again, this held true for both the right and left prefrontal cortex, and there was no sign of either publication bias or heterogeneity. 

Most of the RCTs also performed follow-ups roughly a month after treatment, on the theory that induced neuroplasticity could lead to later improvements. 

Meta-analysis of four RCTs combining 118 participants found no significant improvement in ADHD symptoms for tDCS over sham-TDCS at follow-up. This held true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity. 

Meta-analysis of five studies totaling 148 participants likewise found no improvement in inattention symptoms or hyperactivity symptoms for tDCS over sham-TDCS at follow-up. AS before, this was true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity. 

The only positive results came from meta-analysis of the same five studies, which reported a medium effect size improvement in impulsivity symptoms at follow-up. Closer examination showed no improvement from stimulation of the right prefrontal cortex, but a large effect size improvement from stimulation of the left prefrontal cortex

Interpretation: 

It is important to note that the one positive result was from three RCTs combining only 90 children and adolescents, a small sample size. Moreover, when only one of sixteen combinations yields a positive outcome, that begins to look like p-hacking for a positive result. 

In research, scientists use something called a “p-value” to determine if their findings are real or just due to chance. A p-value below 0.05 (or 5%) is considered “statistically significant,” meaning there's less than a 5% chance the result happened by pure luck. 

When testing twenty outcomes by this standard, one would expect one to test positive by chance even if there is no underlying association. In this case, one in 16 comes awfully close to that. 

To be sure, the research team straightforwardly reported all sixteen outcomes, but offered an arguably over-positive spin in their conclusion: “Our study only showed tDCS-associated impulsivity improvement in children/adolescents with ADHD during follow-ups and anode placement on the left PFC. ... our findings based on a limited number of available trials warrant further verification from large-scale clinical investigations.” 

October 24, 2025

Meta-analysis Suggests Motor Competence Deficits Associated with ADHD, But With Methodological Shortcomings

Children and adolescents with ADHD tend to be less active and more sedentary than their typically developing peers. This is concerning, since physical activity benefits mental, physical, and social development. For youth with ADHD, being active can improve symptoms like inattention, working memory, and inhibitory control. 

A major barrier to physical activity for children and adolescents with ADHD is limited motor competence. This stems from challenges in developing basic motor skills and more complex abilities needed for sports and advanced movements. 

Difficulties in developing fundamental movement skills – such as locomotor (running, jumping), object-control (throwing, catching), and stability skills (balancing, turning) – can reduce motor competence and limit physical activity. These basic movements are learned and refined with practice and age, not innate abilities. 

To date, research on the link between ADHD and motor competence has remained inconclusive. This systematic review and meta-analysis by a Spanish research team therefore aimed to determine whether children and adolescents with ADHD differ in motor competence from those with typical development (TD). 

Studies had to include children and adolescents diagnosed with ADHD. They had to involve a full motor assessment battery, not just one test, and present motor competence data for both ADHD and TD groups. 

The team excluded studies involving participants with other neurodevelopmental disorders or cognitive impairments, unless separate data for the ADHD subgroup were reported. 

Meta-analysis of six studies combining 323 children and adolescents found that typically developing individuals were twelve times more likely to score in the 5th percentile of the Movement Assessment Battery for Children as their peers diagnosed with ADHD. They were also three times more likely to score in the 15th percentile (five studies, 289 participants). Results were consistent across the studies (low heterogeneity). All included studies were randomized. 

Meta-analysis of five studies totaling 198 participants using the Test of Gross Motor Development reported significant deficits in both locomotor skills and object control skills among children and adolescents diagnosed with ADHD relative to their typically developing peers. In this case, however, results were inconsistent across studies (very high heterogeneity), and one of the studies was unrandomized. Because the team published only unstandardized mean differences, there was no indication of effect sizes. 

Meta-analysis of two studies encompassing 164 participants using the Bruininks-Oseretsky Test of Motor Proficiency similarly yielded significant deficits among children and adolescents diagnosed with ADHD relative to their typically developing peers, but in this case with low heterogeneity. Notably, one of the two studies was not randomized. 

Moreover, the team made no assessment of publication bias. 

The team concluded, “The findings of this review indicate that children and adolescents with ADHD show significantly lower levels of motor competence compared to their TD peers. This trend was evident across a range of validated assessment tools, including the MABC, BOT, TGMD, and other standardized test batteries. Future research should aim to reduce methodological heterogeneity and further investigate the influence of factors such as ADHD subtypes and comorbid conditions on motor development trajectories.” 

However, without a publication bias assessment, reliance on unrandomized studies in two of the tests, no indication of effect size in the same two tests, and small sample sizes, these results are at best suggestive, and will require further research to confirm. 

October 21, 2025