July 21, 2025

What Metabolites Tell Us About ADHD — And What This Means for Diet and Treatment

New research has uncovered important links between certain blood metabolites and ADHD by using a genetic method called Mendelian randomization. This approach leverages natural genetic differences to help identify which metabolites might actually cause changes in ADHD risk, offering stronger clues than traditional observational studies.

Key Metabolic Pathways Involved:

The study found 42 plasma metabolites with a causal relationship to ADHD. Most fall into two major groups:

  • Amino acid metabolites from protein metabolism, including those related to tyrosine, methionine, cysteine, and taurine.

  • Fatty acids, especially long-chain polyunsaturated fatty acids (PUFAs) like DHA and EPA, important for brain function.

What Does This Mean for Diet and ADHD?

Since many metabolites come from dietary sources like proteins and fats this supports the idea that diet could influence metabolic pathways involved in ADHD. However, because the study focused on genetic influences on metabolite levels, it doesn’t directly prove that dietary changes will have the same effects.

Notable Metabolites:

  • 3-Methoxytyramine sulfate (MTS): linked to dopamine metabolism, higher genetic levels of MTS were associated with a lower risk of ADHD. Dopamine plays a crucial role in attention and behavior.

  • DHA and EPA: Omega-3 fatty acids abundant in the brain; higher levels were linked to reduced ADHD risk, supporting existing research on omega-3 supplements.

  • N-acetylneuraminate: Involved in brain development and immune function, with higher levels linked to increased ADHD risk, though more research is needed to understand this.

Five metabolites showed bidirectional links with ADHD, meaning genetic risk for ADHD also affects their levels which suggests a complex interaction between brain function and metabolism.

Twelve ADHD-related metabolites are targets of existing drugs or supplements, including:

  • Acetylcysteine: an antioxidant used in various treatments.

  • DHA supplements: widely used to support brain and heart health.

What This Study Doesn’t Show

While these findings highlight biological pathways, they don’t prove that changing diet will directly alter ADHD symptoms. Metabolite levels are shaped by genetics plus environment, lifestyle, and health factors, which require further study.

Conclusion: 

This research provides stronger evidence of metabolic pathways involved in ADHD and points to new possibilities for diagnosis and treatment. Future work could explore how diet or drugs might safely adjust these metabolites to help manage ADHD.

While this study strengthens the link between amino acid and fatty acid metabolism and ADHD risk, suggesting that diet could play a role, ultimately more research is still needed before experts could use this research to give specific nutritional advice.

Shi S, Baranova A, Cao H, Zhang F. Exploring causal associations between plasma metabolites and attention-deficit/hyperactivity disorder. BMC Psychiatry. 2025 May 16;25(1):498. doi: 10.1186/s12888-025-06951-9. PMID: 40380147; PMCID: PMC12084988.

Related posts

ADHD and Eating Disorders

ADHD and Eating Disorders

A relatively new area of ADHD research has been examining the association between ADHD and eating disorders (i.e., anorexia nervosa, bulimia nervosa, and binge-eating disorder). Nazar and colleagues conducted a systematic review and meta-analysis of extant studies.  

They found only twelve studies that assessed the presence of eating disorders among people with ADHD and five that examined the prevalence of ADHD among patients with eating disorders. Although there were few studies, the total number of people studied was large, with 4,013 ADHD cases and 29,404 controls for the first set of studies and 1,044 eating disorder cases and 11,292 controls for the second set of studies.  The meta-analyses of these data found that ADHD people had a 3.8-fold increased risk for an eating disorder compared with non-ADHD controls.  The level of risk was similar for each of the eating disorders.  Consistent with this, their second meta-analysis found that people with eating disorders had a 2.6-fold increased risk for ADHD compared with controls who did not have an eating disorder. The risk for ADHD was highest for those with binge-eating disorder (5.8-fold increased risk compared with controls).  

This bidirectional association between ADHD and eating disorders provides converging evidence that this association is real and, given its magnitude, clinically significant. The results were similar for males and females and pediatric and adult populations.

We cannot tell from these data why ADHD is associated with eating disorders. Nazar et al. note that other work implicates both impulsivity and inattention in promoting bulimic symptoms, whereas inattention and hyperactivity are associated with craving. The association may also be due to the neurocognitive deficits of ADHD, which could lead to a distorted sense of self-awareness and body image.

Given that ADHD is also associated with obesity, some obese ADHD patients may have an underlying eating disorder, such as binge-eating, which has been associated with obesity in prospective studies. Also, lisdexamfetamine is FDA-approved for treating both binge eating and ADHD, which suggests the possibility that the two conditions share an underlying etiology involving the dopamine system. We do not know if treating ADHD would reduce the risk for eating disorders, as that hypothesis has not yet been tested. But such an effect would seem likely if ADHD behaviors mediate the association between the two disorders.

March 22, 2021

Do Some Foods Cause ADHD? Does Dieting Help?

Do Some Foods Cause ADHD? Does Dieting Help?

If we are to read what we believe on the Internet, dieting can cure many of the ills faced by humans. Much of what is written is true. Changes in dieting can be good for heart disease, diabetes, high blood pressure, and kidney stones to name just a few examples. But what about ADHD? Food elimination diets have been extensively studied for their ability to treat ADHD. They are based on the very reasonable idea that allergies or toxic reactions to foods can have effects on the brain and could lead to ADHD symptoms.

Although the idea is reasonable, it is not such an easy task to figure out what foods might cause allergic reactions that could lead to ADHD symptoms. Some proponents of elimination diets have proposed eliminating a single food, others include multiple foods, and some go as far as to allow only a few foods to be eaten to avoid all potential allergies. Most readers will wonder if such restrictive diets, even if they did work, are feasible. That is certainly a concern for very restrictive diets.

Perhaps the most well-known ADHD diet is the Feingold diet(named after its creator). This diet eliminates artificial food colorings and preservatives that have become so common in the western diet. Some have claimed that the increasing use of colorings and preservatives explains why the prevalence of ADHD is greater in Western countries and has been increasing over time. But those people have it wrong. The prevalence of ADHD is similar around the world and has not been increasing over time. That has been well documented but details must wait for another blog.

The Feingold and other elimination diets have been studied by meta-analysis. This means that someone analyzed several well-controlled trials published by other people. Passing the test of meta-analysis is the strongest test of any treatment effect. When this test is applied to the best studies available, there is evidence that the exclusion of fool colorings helps reduce ADHD symptoms. But more restrictive diets are not effective. So removing artificial food colors seems like a good idea that will help reduce ADHD symptoms. But although such diets ‘work’, they do network very well. On a scale of one to 10where 10 is the best effect, drug therapy scores 9 to 10 but eliminating food colorings scores only 3 or 4. Some patients or parents of patients might want this diet change first in the hopes that it will work well for them. That is a possibility, but if that is your choice, you should not delay the more effective drug treatments for too long in the likely event that eliminating food colorings is not sufficient. You can learn more about elimination diets from Nigg, J. T., and K.Holton (2014). "Restriction and elimination diets in ADHD treatment."Child Adolesc Psychiatr Clin N Am 23(4): 937-953.

Keep in mind that the treatment guidelines from professional organizations point to ADHD drugs as the first-line treatment for ADHD. The only exception is for preschool children where medication is only the first-line treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available. You can learn more about non-pharmacologic treatments for ADHD from a book I recently edited: Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child AdolescPsychiatr Clin N Am 23, xiii-xiv.

March 20, 2021

Large Sibling Study Finds Genetic Link Between ADHD and Other Disorders

Swedish Countrywide Sibling Population Study Finds Co-occurrence of ADHD with Neurological and Psychiatric Disorders is Largely Due to Genetics

A Swedish-Danish-Dutch team used the Swedish Medical Birth Register to identify the almost 1.7 million individuals born in the country between 1980 and 1995. Then, using the Multi-Generation Register, they identified 341,066 pairs of full siblings and 46,142 pairs of maternal half-siblings, totaling 774,416 individuals.

The team used the National Patient Register to identify diagnoses of ADHD, as well as neurodevelopmental disorders (autism spectrum disorder, developmental disorders, intellectual disability, motor disorders), externalizing psychiatric disorders (oppositional defiant and related disorders, alcohol misuse, drug misuse), and internalizing psychiatric disorders (depression, anxiety disorder, phobias, stress disorders, obsessive-compulsive disorder).

The team found that ADHD was strongly correlated with general psychopathology overall (r =0.67), as well as with the neurodevelopmental (r = 0.75), externalizing (r =0.67), and internalizing (r = 0.67) sub factors.

To tease out the effects of heredity, shared environment, and non-shared environment, a multivariate correlation model was used. Genetic variables were estimated by fixing them to correlate between siblings at their expected average gene sharing (0.5for full siblings, 0.25 for half-siblings). Non-genetic environmental components shared by siblings (such as growing up in the same family) were estimated by fixing them to correlate at 1 across full and half-siblings. Finally, non-shared environmental variables were estimated by fixing them to correlate at zero across all siblings.

This model estimated the heritability of the general psychopathology factor at 49%, with the contribution of the shared environment at 7 percent and the non-shared environment at 44%. After adjusting for the general psychopathology factor, ADHD showed a significant and moderately strong phenotypic correlation with the neurodevelopmental-specific factor (r = 0.43), and a significantly smaller correlation with the externalizing-specific factor (r = 0.25).

For phenotypic correlation between ADHD and the general psychopathology factor, genetics explained 52% of the total correlation, the non-shared environment 39%, and the shared familial environment only 9%. For the phenotypic correlation between ADHD and the neurodevelopmental-specific factor, genetics explained the entire correlation because the other two factors had competing effects that canceled each other out. For the phenotypic correlation between ADHD and the externalizing-specific factor, genetics explained 23% of the correlation, shared environment 22%, and non-shared environment 55%.

The authors concluded that "ADHD is more phenotypically and genetically linked to neurodevelopmental disorders than to externalizing and internalizing disorders, after accounting for a general psychopathology factor. ... After accounting for the general psychopathology factor, the correlation between ADHD and the neurodevelopmental-specific factor remained moderately strong, and was largely genetic in origin, suggesting substantial unique sharing of biological mechanisms among disorders. In contrast, the correlation between ADHD and the externalizing-specific factor was much smaller and was largely explained by-shared environmental effects. Lastly, the correlation between ADHD and the internalizing subfactor was almost entirely explained by the general psychopathology factor. This finding suggests that the comorbidity of ADHD and internalizing disorders are largely due to shared genetic effects and non-shared environmental influences that have effects on general psychopathology."

March 16, 2024

What Metabolites Tell Us About ADHD — And What This Means for Diet and Treatment

New research has uncovered important links between certain blood metabolites and ADHD by using a genetic method called Mendelian randomization. This approach leverages natural genetic differences to help identify which metabolites might actually cause changes in ADHD risk, offering stronger clues than traditional observational studies.

Key Metabolic Pathways Involved:

The study found 42 plasma metabolites with a causal relationship to ADHD. Most fall into two major groups:

  • Amino acid metabolites from protein metabolism, including those related to tyrosine, methionine, cysteine, and taurine.

  • Fatty acids, especially long-chain polyunsaturated fatty acids (PUFAs) like DHA and EPA, important for brain function.

What Does This Mean for Diet and ADHD?

Since many metabolites come from dietary sources like proteins and fats this supports the idea that diet could influence metabolic pathways involved in ADHD. However, because the study focused on genetic influences on metabolite levels, it doesn’t directly prove that dietary changes will have the same effects.

Notable Metabolites:

  • 3-Methoxytyramine sulfate (MTS): linked to dopamine metabolism, higher genetic levels of MTS were associated with a lower risk of ADHD. Dopamine plays a crucial role in attention and behavior.

  • DHA and EPA: Omega-3 fatty acids abundant in the brain; higher levels were linked to reduced ADHD risk, supporting existing research on omega-3 supplements.

  • N-acetylneuraminate: Involved in brain development and immune function, with higher levels linked to increased ADHD risk, though more research is needed to understand this.

Five metabolites showed bidirectional links with ADHD, meaning genetic risk for ADHD also affects their levels which suggests a complex interaction between brain function and metabolism.

Twelve ADHD-related metabolites are targets of existing drugs or supplements, including:

  • Acetylcysteine: an antioxidant used in various treatments.

  • DHA supplements: widely used to support brain and heart health.

What This Study Doesn’t Show

While these findings highlight biological pathways, they don’t prove that changing diet will directly alter ADHD symptoms. Metabolite levels are shaped by genetics plus environment, lifestyle, and health factors, which require further study.

Conclusion: 

This research provides stronger evidence of metabolic pathways involved in ADHD and points to new possibilities for diagnosis and treatment. Future work could explore how diet or drugs might safely adjust these metabolites to help manage ADHD.

While this study strengthens the link between amino acid and fatty acid metabolism and ADHD risk, suggesting that diet could play a role, ultimately more research is still needed before experts could use this research to give specific nutritional advice.

July 21, 2025

Network Meta-analysis Explores Long-term Efficacy of Nonpharmacological Treatments for Improving Inhibitory Control in Children and Adolescents with ADHD

Background Info:

Executive functions include inhibitory control, working memory, and cognitive flexibility. Inhibitory control is the ability to suppress distractions and focus on goals, which is the main deficit in ADHD. 

Children and adolescents with ADHD often have off-task, unrelated thoughts and are easily distracted, limiting their sustained attention. This makes it difficult for them to focus on tasks and leads to impulsive behaviors that affect their daily life, academics, and social interactions. Improving inhibitory control in ADHD children and adolescents is essential. 

Stimulant medications are commonly used to treat ADHD. However, side effects like insomnia, loss of appetite, and headaches may make parents hesitant to use these medications for their children. 

Non-pharmacological treatments like cognitive training, behavior therapy, and physical exercise have gained attention for their lack of side effects. Research shows that some non-pharmacological methods can improve cognitive outcomes significantly, underscoring their potential in treating ADHD. 

Study:

A Chinese research team identified four key gaps in current research on non-pharmacological treatments for inhibitory control in children with ADHD: 

  • Existing meta-analyses seldom differentiate between short-term and long-term interventions.  
  • Most studies focus primarily on short-term effects and neglect evaluation of maintenance effects through follow-up assessments.  
  • New treatment methods, such as meditation and board games, have not been systematically assessed in meta-analyses for their impact on inhibitory control in children and adolescents with ADHD, leaving their effectiveness uncertain.  
  • Traditional meta-analysis does not tell us which intervention is most effective. Without this comparative analysis, it is difficult to rank efficacy. 

The team therefore performed a network meta-analysis of long-term randomized controlled trials (RCTs) to assess and rank the effectiveness of various non-pharmacological treatments on inhibitory control in children and adolescents with ADHD. 

The team included only RCTs relying on professional diagnoses of ADHD, excluding those based only on parent and teacher rating scales.  

The included studies measured inhibitory control using objective neurocognitive tasks, such as the Stroop test and the Go/No-Go test, to reduce potential subjective bias. Studies relying on parent- or teacher-reported questionnaires were excluded. 

Controls either received no intervention or placebo, such as watching running videos and attending history classes. 

Meta-analysis of 16 studies combining 546 participants found large short-term effect size improvements in inhibitory control from physical exercise. But the two studies with a total of 110 participants that performed a follow-up test reported only a small-to-medium effect size improvement. 

For cognitive training, a meta-analysis of fifteen studies totaling 674 participants reported a medium effect size of short-term improvement in inhibitory control. The ten studies with 563 participants that performed a follow-up test found only a small effect size improvement since treatment initiation. 

For behavioral therapy, meta-analysis of six studies encompassing 244 individuals likewise found a medium effect size short-term improvement in inhibitory control. In this case, however two studies combining 91 participants that performed a follow-up test reported that the medium effect size improvement was maintained. 

For neurofeedback, meta-analysis of seven studies encompassing 186 individuals found a small-to-medium effect size short-term improvement in inhibitory control. The only study that performed a follow-up test reported a small effect size improvement since treatment initiation. 

The two studies with a combined 44 individuals exploring board games found no significant improvement in inhibitory control. Likewise, the two studies combining 32 participants that explored meditation found no significant improvement in inhibitory control. 

There was no indication of publication bias. 

Conclusion:

The team concluded, “Existing evidence shows that physical exercise, behavior therapy, cognitive training, and neurofeedback can effectively improve the inhibitory control of children and adolescents with ADHD. However, meditation, EMG feedback, and board games did not significantly affect inhibitory control. Physical exercise has the best effect among all non-pharmacological treatments, but its impact will be weakened after intervention. Behavior therapy and cognitive training had a slightly lower effect, but they have a better maintenance effect.” 

Ultimately, the study results suggest that non-drug treatments can help children and teens with ADHD improve their ability to control their actions and stay focused. Some methods, like physical exercise, work well at first but may fade once the activity stops. Other methods, like behavioral therapy and cognitive training, may take a little longer to show results but can last longer and make a bigger difference over time. Ultimately, and most importantly, because this work did not study the symptoms of ADHD or its real-world impairments, it provides no reason to change current treatment practices for ADHD.

July 16, 2025

The Role of Serotonin in ADHD and Its Many Comorbidities

Serotonin is a key chemical in the body that helps regulate mood, behavior, and also many physical functions such as sleep and digestion. It has also been linked to how ADHD (attention-deficit/hyperactivity disorder) develops in the brain. This study looks at how serotonin may be involved in both the mental health and physical health conditions that often occur alongside ADHD.

It is well-established that ADHD is more than just trouble focusing or staying still. For many, it brings along a host of other physical and mental health challenges. It is very common for those with ADHD to also have other diagnosed disorders. For example, those with ADHD are often also diagnosed with depression, anxiety, or sleep disorders. When these issues overlap, they are called comorbidities. 

A new comprehensive review, led by Dr. Stephen V. Faraone and colleagues, delves into how serotonin (5-HT), a major brain chemical, may be at the heart of many of these common comorbidities.

Wait! I thought ADHD had to do with Dopamine–Why are we looking at Serotonin?

Serotonin is a neurotransmitter most often linked to mood, but its role in regulating the body has much broader implications. It regulates sleep, digestion, metabolism, hormonal balance, and even immune responses. Although ADHD has long been associated with dopamine and norepinephrine dysregulation, this review suggests that serotonin also plays a central role, especially when it comes to comorbid conditions.

The Study:

  • Objective: To systematically review which conditions commonly co-occur with ADHD and determine whether serotonin dysfunction might be a common thread linking them.

  • Method: The authors combed through existing literature up to March 2024, analyzing evidence for serotonin involvement in each comorbidity associated with ADHD.

  • Scope: 182 psychiatric and somatic conditions were found to frequently occur in people with ADHD.

Key Findings

  • 74% of Comorbidities Linked to Serotonin: Of the 182 comorbidities identified, 135 showed evidence of serotonergic involvement—91 psychiatric and 44 somatic (physical) conditions.

  • Psychiatric Comorbidities: These include anxiety disorders, depression, bipolar disorder, and obsessive-compulsive disorder—all of which have long-standing associations with serotoninergic dysfunction.

  • Somatic Comorbidities: Conditions like irritable bowel syndrome (IBS), migraines, and certain sleep disorders also showed a significant serotonergic link.

This research suggests that serotonin dysregulation could explain the diverse and sometimes puzzling range of symptoms seen in ADHD patients. It supports a more integrative model of ADHD—one that goes beyond the brain’s attention, reward and executive control circuits and considers broader physiological and psychological health.

future research into the role of serotonin could help develop more tailored interventions, especially for patients who don't respond well to stimulant medications. Future studies may focus on serotonin’s role in early ADHD development and how it interacts with environmental and genetic factors.

The Take-Away: 

This study is a strong reminder that ADHD is a complex, multifaceted condition. Differential diagnosis is crucial to properly diagnosing and treating ADHD. Clinicians' understanding of the underlying link between ADHD and its common comorbidities may help future ADHD patients receive the individualized care they need. By shedding light on serotonin’s wide-reaching influence, this study may provide a valuable roadmap for improving how we diagnose and treat those with complex comorbidities in the future. 

July 14, 2025