April 24, 2024

Large Six-region Meta-analysis Finds No Association Between ADHD Medications and Cardiovascular Risk

Are attention-deficit/hyperactivity disorder (ADHD) medications associated with risk of cardiovascular disease (CVD)?

An international study team has just explored this question with a meta-analysis of nineteen studies with a total of almost four million participants of all ages. It included 3,931,532 participants from six countries or regions: United States, South Korea, Canada, Denmark, Spain, and Hong Kong. 

Overall, using the entire data set, it found no significant association between any ADHD medication use and any cardiovascular event. 

The same held true when breaking this down by children and adolescents (twelve studies with over 1.7 million participants), young and middle-aged adults (seven studies with over 850,000 participants), and older adults (six studies with over a quarter million participants).

The team then compared the data for stimulant medications with data for non-stimulant medications. A meta-analysis of 17 studies with over 3.8 million participants found no significant association between stimulant medications and cardiovascular risk. Similarly, a meta-analysis of three studies with over 670,000 participants found no significant association between non-stimulant medications and cardiovascular risk.

Distinguishing between types of cardiovascular risk made no difference. For instance, a meta-analysis of nine studies with over 900,000 participants found no effect of stimulant medications on risk of myocardial infarction (heart attack), and a meta-analysis of six studies, also with over 900,000 participants, found no effect of stimulant medications on risk of cerebrovascular disease, including stroke, brain aneurysm, brain bleed, and carotid artery disease. A meta-analysis of eight studies with over 1.1 million participants did find an increase in the occurrence of cardiac arrest and tachyarrhythmias (racing heart rate accompanied by arrhythmias), but it was not statistically significant.

A meta-analysis of eleven studies with over 3.1 million persons with no prior history of cardiovascular disease found absolutely no effect of ADHD medications on subsequent risk for any cardiovascular event. Another meta-analysis, of eight studies encompassing over 1.8 million individuals with a prior history of cardiovascular disease, reported a higher rate of subsequent occurrence, but it was not considered statistically significant.

The team concluded, “Overall, our meta-analysis provides reassuring data on the putative cardiovascular risk with ADHD medications.” An international team of researchers recently investigated whether medications for attention-deficit/hyperactivity disorder (ADHD) are linked to an increased risk of cardiovascular disease (CVD). They conducted a comprehensive review, known as a meta-analysis, which included 19 studies with nearly four million participants from six countries or regions: the United States, South Korea, Canada, Denmark, Spain, and Hong Kong.

The findings from the entire data set showed no significant link between the use of any ADHD medications and the occurrence of cardiovascular events. This lack of association was consistent across all age groups: children and adolescents (12 studies with over 1.7 million participants), young and middle-aged adults (7 studies with over 850,000 participants), and older adults (6 studies with over 250,000 participants).

The researchers also compared the effects of stimulant medications against non-stimulant medications on cardiovascular risk. Both categories showed no significant risks in a meta-analysis of 17 studies with more than 3.8 million participants for stimulants, and three studies with over 670,000 participants for non-stimulants.

Further analysis differentiated between types of cardiovascular risks, such as myocardial infarction (heart attack) and cerebrovascular diseases (like stroke, brain aneurysm, and carotid artery disease). Again, stimulant medications showed no significant impact on these conditions in studies involving over 900,000 participants each. However, a review of eight studies with over 1.1 million participants suggested a slight increase in incidents of cardiac arrest and tachyarrhythmias (a racing heart rate with irregular rhythms), but these findings were not statistically significant.

Additionally, an analysis of 11 studies involving more than 3.1 million people without a prior history of cardiovascular disease found no effect of ADHD medications on the risk of developing cardiovascular events. Likewise, an analysis of eight studies with over 1.8 million individuals who had a history of cardiovascular disease showed a higher occurrence rate of events, but this increase was also not statistically significant.

Conclusion:

The conclusion of the research team was clear: the data is reassuring and does not suggest a substantial cardiovascular risk associated with ADHD medications. Keep in  mind that this reflects current standards of care.  Most guidelines call for monitoring of pulse and blood pressure during treatment so that adverse cardiovascular outcomes can be avoided.

Le Zhang, Honghui Yao, Lin Li, Ebba Du Rietz, Pontus Andell, Miguel Garcia-Argibay, Brian M. D’Onofrio, Samuele Cortese, Henrik Larsson, Zheng Chang, “Risk of Cardiovascular Diseases Associated With Medications Used in Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analysis,” JAMA Network Open (2022) 5(11), e2243597, https://doi.org/10.1001/jamanetworkopen.2022.43597.

Related posts

Study Suggests Certain ADHD Meds May Have Protective Effect On The Brain

Might methylphenidate have a protective effect on brain development?

Methylphenidate, a psychostimulant, is among the drugs most frequently prescribed to children with ADHD.

Using magnetic resonance imaging(MRI), studies have shown that as children mature, those with ADHD differ from controls in developing regionally thinner cortices (the folded outer layer of the cerebrum that is essential to rational thought) and smaller lower basal ganglia(structures linked to the thalamus in the base of the brain and involved in the coordination of movement). The cortical differences were found in the right medial frontal motor region, the left middle/inferior frontal gyrus, and the right posterior parieto-occipital region in children with ADHD who were not taking psychostimulants.

A Dutch/Norwegian team of researchers conducted a randomized, double-blind, placebo-controlled trial with 96 males recruited from Dutch clinical programs. 48 were boys aged 10-12 years, and 47 were men between the ages of 23 and 40. None had previously been on methylphenidate. There were no significant differences in baseline age, ADHD symptom severity, estimated intelligence quotient, the proportion of right-handedness, or region of interest brain characteristics between the placebo and medication groups.

The trial was carried out during the standard 17-week waiting list time for evaluation and treatment to begin so that those receiving a placebo during the trial would not ultimately be at a disadvantage. The same MRI scanner was used for all measurements, both before and after treatment.

Among the boys, the methylphenidate group showed increased thickness in the right medial cortex, while the placebo group showed cortical thinning. In adults, both groups showed cortical thinning. When converted into an estimated mean rate of change in cortical thickness for the right medial cortex, boys taking methylphenidate could expect to lose about 0.01 mm per year, versus about 0.14 mm for boys not on methylphenidate.

In the right posterior cortex, scans also showed reduced thinning in the methylphenidate treatment group, though to a lesser extent. But there was no reduced thinning in the left frontal cortex.

The authors noted several limitations. The sample size was small. Second, "because we did not detect significant relationships between changes in cortical [regions of interest] and changes in symptom severity, the functional significance remains uncertain." Third, the follow-up period was relatively short, not allowing any assessment of the longer-term effects of the medication. Fourth, the differences in effects on the three brain regions examined were uneven, contrary to what had been expected from previous studies. They recommended replication with larger groups and longer follow-ups.

February 11, 2022

ADHD medication and risk of suicide

ADHD medication and risk of suicide

A Chinese research team performed two types of meta-analyses to compare the risk of suicide for ADHD patients taking ADHD medication as opposed to those not taking medication.

The first type of meta-analysis combined six large population studies with a total of over 4.7 million participants. These were located on three continents - Europe, Asia, and North America - and more specifically Sweden, England, Taiwan, and the United States.

The risk of suicide among those taking medication was found to be about a quarter less than for unmediated individuals, though the results were barely significant at the 95 percent confidence level (p = 0.49, just a sliver below the p = 0.5 cutoff point). There were no significant differences between males and females, except that looking only at males or females reduced sample size and made results non-significant.

Differentiating between patients receiving stimulant and non-stimulant medications produced divergent outcomes. A meta-analysis of four population studies covering almost 900,000 individuals found stimulant medications to be associated with a 28 percent reduced risk of suicide. On the other hand, a meta-analysis of three studies with over 62,000 individuals found no significant difference in suicide risk for non-stimulant medications. The benefit, therefore, seems limited to stimulant medication.

The second type of meta-analysis combined three within-individual studies with over 3.9 million persons in the United States, China, and Sweden. The risk of suicide among those taking medication was found to be almost a third less than for unmediated individuals, though the results were again barely significant at the 95 percent confidence level (p =0.49, just a sliver below the p = 0.5 cutoff point). Once again, there were no significant differences between males and females, except that looking only at males or females reduced the sample size and made results non-significant.

Differentiating between patients receiving stimulant and non-stimulant medications once again produced divergent outcomes. Meta-analysis of the same three studies found a 25 percent reduced risk of suicide among those taking stimulant medications. But as in the population studies, a meta-analysis of two studies with over 3.9 million persons found no reduction in risk among those taking non-stimulant medications.

A further meta-analysis of two studies with 3.9 million persons found no reduction in suicide risk among persons taking ADHD medications for 90 days or less, "revealing the importance of duration and adherence to medication in all individuals prescribed stimulants for ADHD."

The authors concluded, "exposure to non-stimulants is not associated with a higher risk of suicide attempts. However, a lower risk of suicide attempts was observed for stimulant drugs. However, the results must be interpreted with caution due to the evidence of heterogeneity ..."

December 13, 2021

A Lesson in Cautious Interpretation: Meta-analysis Suggests Neurofeedback Improves ADHD Symptoms

Executive function impairment is a key feature of ADHD, with its severity linked to the intensity of ADHD symptoms. Executive function involves managing complex cognitive tasks for organized behavior and includes three main areas: inhibitory control (suppressing impulsive actions), working memory (holding information briefly), and cognitive flexibility (switching between different mental tasks). Improving executive functions is a critical objective in the treatment of ADHD. 

Amphetamines and methylphenidate are commonly used to treat ADHD, but can cause side effects like reduced appetite, sleep problems, nausea, and headaches. Long-term use may also lead to stunted growth and cardiovascular issues. This encourages the search for non-invasive methods to enhance executive function in children with ADHD. 

Neurological techniques like neurofeedback and transcranial stimulation are increasingly used to treat children with neurodevelopmental disorders. Neurofeedback is the most adopted method; it is noninvasive and aims to improve brain function by providing real-time feedback on brainwave activity so participants can self-regulate targeted brain regions. 

The systematic search and meta-analysis examined children and adolescents aged 6–18 with ADHD. It included randomized and non-randomized controlled trials, as well as quasi-experimental studies that reported statistical data such as participant numbers, means, and standard deviations. Studies were required to use validated measures of executive function, including neurocognitive tasks or questionnaires. They also had to have control groups. 

A meta-analysis of ten studies (539 participants) found a small-to-medium improvement in inhibitory control after neurofeedback training, with no publication bias and minimal study heterogeneity*. Long-term treatment (over 21 hours) showed benefits, while short-term treatment did not. However, publication bias was present in the long-term treatment studies and was not addressed. 

A meta-analysis of seven studies with 370 children and adolescents found a small-to-medium improvement in working memory after neurofeedback, with no publication bias overall but high heterogeneity. A dose-response effect was observed: treatments over 21 hours showed benefits, while shorter ones did not. However, publication bias was present in the long-term treatment studies and was not addressed. 

The study team also looked at sustained effects six months to a year after conclusion of training. Meta-analysis of two studies totaling 131 participants found a sustained small-to-medium improvement in inhibitory control, with negligible heterogeneity. Meta-analysis of three studies combining 182 participants found a sustained medium improvement in working memory, with moderate heterogeneity and no sign of publication bias. 

The team concluded, “NFT is an effective intervention for improving executive function in children with ADHD, specifically inhibitory control and working memory. This approach demonstrates a more pronounced impact on working memory when extended beyond 1000 min [sic], with inhibitory control following closely behind. Furthermore, the evidence suggests that NFT may have sustained effects on both working memory and inhibitory control. Given the relatively small number of studies assessing long-term effects and the potential for publication bias, further research is necessary to confirm these effects.” 

Moreover, because 1) RCTs are the gold standard, and the meta-analyses combined RCTs with non-RCTs, and 2) data from neurocognitive tasks was combined with data from more subjective and less accurate questionnaires, these meta-analysis results should be interpreted with further caution. 

*Heterogeneity refers to the rate of variation between individual study outcomes. High heterogeneity means that there was substantial variation in the results. When a meta-anaylysis has high heterogeneity, it suggests that the studies differ significantly in their populations, methods, interventions, or outcomes, making the combined result much less reliable.

October 17, 2025

Yes, ADHD Diagnoses Are Rising, But That Doesn’t Mean It’s Overdiagnosed

Many news outlets have reported an increase – or surge – in attention-deficit/hyperactivity disorder, or ADHD, diagnoses in both children and adults. At the same time, health care providers, teachers and school systems have reported an uptick in requests for ADHD assessments.

These reports have led some experts and parents to wonder whether ADHD is being overdiagnosed and overtreated.

As researchers who have spent our careers studying neurodevelopmental disorders like ADHD, we are concerned that fears about widespread overdiagnosis are misplaced, perhaps based on a fundamental misunderstanding of the condition.

Understanding ADHD as a spectrum:

Discussions about overdiagnosis of ADHD imply that you either have it or you don’t.

However, when epidemiologists ask people in the general population about their symptoms of ADHD, some have a few symptoms, some have a moderate level, and a few have lots of symptoms. But there is no clear dividing line between those who are diagnosed with ADHD and those who are not, since ADHD – much like blood pressure – occurs on a spectrum.

Treating mild ADHD is similar to treating mild high blood pressure – it depends on the situation. Care can be helpful when a doctor considers the details of a person’s daily life and how much the symptoms are affecting them.

Not only can ADHD symptoms be very different from person to person, but research shows that ADHD symptoms can change within an individual. For example, symptoms become more severe when the challenges of life increase.

ADHD symptoms fluctuate depending on many factors, including whether the person is at school or home, whether they have had enough sleep, if they are under a great deal of stress or if they are taking medications or other substances. Someone who has mild ADHD may not experience many symptoms while they are on vacation and well rested, for example, but they may have impairing symptoms if they have a demanding job or school schedule and have not gotten enough sleep. These people may need treatment for ADHD in certain situations but may do just fine without treatment in other situations.

This is similar to what is seen in conditions like high blood pressure, which can change from day to day or from month to month, depending on a person’s diet, stress level and many other factors.

Can ADHD symptoms change over time?

ADHD symptoms start in early childhood and typically are at their worst in mid-to late childhood. Thus, the average age of diagnosis is between 9 and 12 years old. This age is also the time when children are transitioning from elementary school to middle school and may also be experiencing changes in their environment that make their symptoms worse.

Classes can be more challenging beginning around fifth grade than in earlier grades. In addition, the transition to middle school typically means that children move from having all their subjects taught by one teacher in a single classroom to having to change classrooms with a different teacher for each class. These changes can exacerbate symptoms that were previously well-controlled. Symptoms can also wax and wane throughout life.

Psychiatric problems that often co-occur with ADHD, such as anxiety or depression, can worsen ADHD symptoms that are already present. These conditions can also mimic ADHD symptoms, making it difficult to know which to treat. High levels of stress leading to poorer sleep, and increased demands at work or school, can also exacerbate or cause ADHD-like symptoms.

Finally, the use of some substances, such as marijuana or sedatives, can worsen, or even cause, ADHD symptoms. In addition to making symptoms worse in someone who already has an ADHD diagnosis, these factors can also push someone who has mild symptoms into full-blown ADHD, at least for a short time.

The reverse is also true: Symptoms of ADHD can be minimized or reversed in people who do not meet full diagnostic criteria once the external cause is removed.

How prevalence is determined:

Clinicians diagnose ADHD based on symptoms of inattention, hyperactivity and impulsivity. To make an ADHD diagnosis in children, six or more symptoms in at least one of these three categories must be present. For adults, five or more symptoms are required, but they must begin in childhood. For all ages, the symptoms must cause serious problems in at least two areas of life, such as home, school or work.

Current estimates show that the strict prevalence of ADHD is about 5% in children. In young adults, the figure drops to 3%, and it is less than 1% after age 60. Researchers use the term “strict prevalence” to mean the percentage of people who meet all of the criteria for ADHD based on epidemiological studies. It is an important number because it provides clinicians and scientists with an estimate on how many people are expected to have ADHD in a given group of people.

In contrast, the “diagnosed prevalence” is the percentage of people who have been diagnosed with ADHD based on real-world assessments by health care professionals. The diagnosed prevalence in the U.S. and Canada ranges from 7.5% to 11.1% in children under age 18. These rates are quite a bit higher than the strict prevalence of 5%.

Some researchers claim that the difference between the diagnosed prevalence and the strict prevalence means that ADHD is overdiagnosed.

We disagree. In clinical practice, the diagnostic rules allow a patient to be diagnosed with ADHD if they have most of the symptoms that cause distress, impairment or both, even when they don’t meet the full criteria. And much evidence shows that increases in the diagnostic prevalence can be attributed to diagnosing milder cases that may have been missed previously. The validity of these mild diagnoses is well-documented.

Consider children who have five inattentive symptoms and five hyperactive-impulsive symptoms. These children would not meet strict diagnostic criteria for ADHD even though they clearly have a lot of ADHD symptoms. But in clinical practice, these children would be diagnosed with ADHD if they had marked distress, disability or both because of their symptoms – in other words, if the symptoms were interfering substantially with their everyday lives.

So it makes sense that the diagnosed prevalence of ADHD is substantially higher than the strict prevalence.

Implications for patients, parents and clinicians:

People who are concerned about overdiagnosis commonly worry that people are taking medications they don’t need or that they are diverting resources away from those who need it more. Other concerns are that people may experience side effects from the medications, or that they may be stigmatized by a diagnosis.

Those concerns are important. However, there is strong evidence that underdiagnosis and undertreatment of ADHD lead to serious negative outcomes in school, work, mental health and quality of life.

In other words, the risks of not treating ADHD are well-established. In contrast, the potential harms of overdiagnosis remain largely unproven.

It is important to consider how to manage the growing number of milder cases, however. Research suggests that children and adults with less severe ADHD symptoms may benefit less from medication than those with more severe symptoms.

This raises an important question: How much benefit is enough to justify treatment? These are decisions best made in conversations between clinicians, patients and caregivers.

Because ADHD symptoms can shift with age, stress, environment and other life circumstances, treatment needs to be flexible. For some, simple adjustments like classroom seating changes, better sleep or reduced stress may be enough. For others, medication, behavior therapy, or a combination of these interventions may be necessary. The key is a personalized approach that adapts as patients’ needs evolve over time.

October 15, 2025

Meta-analysis Finds Aerobic Exercise Associated with Improvements in Executive Functioning

Executive function impairment is a key feature of ADHD, with its severity linked to the intensity of ADHD symptoms. Executive function involves managing complex cognitive tasks for organized behavior and includes three main areas: inhibitory control (suppressing impulsive actions), working memory (holding information briefly), and cognitive flexibility (switching between different mental tasks). Improving executive functions is a critical objective in the management of ADHD. 

Recent studies show that exercise interventions can enhance executive function in individuals with ADHD. Unlike traditional medications, which are costly and may cause side effects such as headaches, nausea, or growth issues, exercise can be incorporated into daily routines of children and adolescents without negative reactions. 

Some studies report that aerobic exercise does not significantly improve executive function. However, most past reviews of aerobic exercise effects on executive function have focused on people without ADHD, with few examining interventions for children or adolescents with ADHD. 

The Study:

A Chinese and South Korean study team conducted a systematic search of the peer-reviewed published literature to perform meta-analyses on randomized controlled trials (RCTs) specifically focused on aerobic exercise interventions for children and adolescents with ADHD. 

All studies included were randomized controlled trials involving participants aged 6 to 18 years who had been clinically diagnosed with ADHD. The interventions consisted of various forms of aerobic exercise, while the control groups engaged in either non-exercise activities or daily routines. Each study was required to report at least one outcome measure with usable data for calculating the effect size on executive functioning. 

The Results:

Meta-analysis of fifteen RCTs combining 653 children and adolescents with ADHD reported a medium to large effect size improvement in inhibitory control. There was no sign of publication bias, but wide heterogeneity (variation) in outcomes among studies.  

Six to eight weeks of aerobic exercise produced modest improvements, with much greater gains seen after twelve weeks. Hour-long sessions were as effective as longer ones. Moderate intensity exercise proved more beneficial than vigorous intensity. 

Meta-analysis of eight RCTs combining 399 children and adolescents with ADHD produced a medium effect size improvement in working memory. There was no sign of publication bias, and heterogeneity was moderate. 

Once again, six to eight weeks of aerobic exercise produced modest improvements, with much greater gains seen after twelve weeks. Hour-long sessions were as effective as longer ones. But in this case moderate-to-vigorous intensity yielded the best results. 

Meta-analysis of ten RCTs combining 443 children and adolescents with ADHD was associated with a medium to large effect size improvement in cognitive flexibility. There was no sign of either publication bias or heterogeneity. Neither the length of treatment, session time, or intensity affected the outcome. 

The Take-Away:

The team concluded, “Our study indicates that aerobic exercise interventions have a positive impact with a moderate effect size on inhibitory control, working memory, and cognitive flexibility in children and adolescents with ADHD. However, the effectiveness of the intervention is influenced by factors such as the intervention period, frequency, session durations, intensity, and the choice between acute or chronic exercise. Specifically, chronic aerobic exercise interventions lasting 12 weeks or longer, with a frequency of 3 to 5 sessions per week, session durations of 60 min or more, and intensities that are moderate or moderate-to-vigorous, have the greatest overall effect… caution should be exercised when interpreting these findings due to the significant heterogeneity in inhibitory control and working memory.”