Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
X
March 7, 2025

The National Health Interview Survey (NHIS) is conducted annually by the National Center for Health Statistics at the Centers for Disease Control and Prevention. The NHIS is done primarily through face-to-face computer-assisted interviews in the homes of respondents. But telephone interviews are substituted on request, or where travel distances make in-home visits impractical.
For each interviewed family, only one sample child is randomly selected by a computer program.
The total number of households with a child or adolescent aged 3-17 for the years 2018 through 2021 was 26,422.
Based on responses from family members, 9.5% of the children and adolescents randomly surveyed throughout the United States had ADHD.
This proportion varied significantly based on age, rising from 1.5% for ages 3-5 to 9.6% for ages 6-11 and to 13.4% for ages 12-17.
There was an almost two-to-one gap between the 12.4% prevalence among males and the 6.6% prevalence among females.
There was significant variation by race/ethnicity. While rates among non-Hispanic whites (11.1%) and non-Hispanic blacks (10.5%) did not differ significantly, these two groups differed significantly from Hispanics (7.2%) and Others (6.6%).
There were no significant variations in ADHD prevalence based on highest education level of family members.
But family income had a significant relationship with ADHD prevalence, especially at lower incomes. For family incomes under the poverty line, the prevalence was 12.7%. That dropped to 10.3% for family incomes above the poverty level but less than twice that level. For all others it dropped further to about 8.5%. Although that might seem like poverty causes ADHD, we cannot draw that conclusion. Other data indicate that adults with ADHD have lower incomes. That would lead to more ADHD in kids from lower income families.
There was also significant geographic variation in reported prevalence rates. It was highest in the South, at 11.3%, then the Midwest at 10%, the Northeast at 9.1%, with a jump down to 6.9% in the West.
Overall ADHD prevalence did not vary significantly by year over the four years covered by this study.
This study highlights a consistently high prevalence of developmental disabilities among U.S. children and adolescents, with notable increases in other developmental delays and co-occurring learning and intellectual disabilities from 2018 to 2021. While the overall prevalence remained stable, these findings emphasize the need for continued research into potential risk factors and targeted interventions to address developmental challenges in youth.
It is also important to note that this study assessed the prevalence of ADHD being diagnosed by healthcare professionals. Due to variations in healthcare accessibility across the country, the true prevalence of ADHD may differ still.
...
Qian Li, Yanmei Li, Juan Zheng, Xiaofang Yan, Jitian Huang, Yingxia Xu, Xia Zeng, Tianran Shen, Xiaohui Xing, Qingsong Chen, and Wenhan Yang, “Prevalence and trends of developmental disabilities among US children and adolescents aged 3 to 17 years, 2018–2021,” Scientific Reports (2023) 13: 17254, https://doi.org/10.1038/s41598-023-44472-1.
Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental condition that is typically diagnosed in childhood but can persist into adulthood. Its symptoms include inattention, hyperactivity, and impulsivity, and it can significantly affect daily life, academic achievement, and professional success. As scientific understanding of the condition continues to evolve, new research is revealing more insights into the prevalence, comorbidity, treatment, and physiological aspects of ADHD in adults. Here's a roundup of some recent findings:
A recent study assessing the prevalence of treatment for ADHD among US college students found that the location of mental health care significantly affects treatment outcomes. Specifically, students receiving mental healthcare on campus were less likely to receive any medication or therapy for ADHD, suggesting the need to evaluate the quality of mental health services available on college campuses and their effectiveness in treating ADHD.
Another study found a correlation between ADHD and the l-Arginine/Nitric oxide (Arg/NO) pathway, a physiological process linked to dopamine release and cardiovascular functioning. The study found that adults with ADHD who were not treated with methylphenidate (a common ADHD medication) showed variations in the Arg/NO pathway. This could have implications for monitoring potential cardiovascular side effects of ADHD medications, as well as for understanding the biochemical changes that occur in ADHD.
ADHD and chronic pain appear to be related, according to a comparative study of clinical and general population samples. Particularly in females with ADHD, the prevalence of chronic and multisite pain was found to be high. This calls for longitudinal studies to understand the complex sex differences of comorbid chronic pain and ADHD in adolescents and the potential impacts of stimulant use on pain.
Finally, a study investigated the comorbidity of ADHD and bipolar disorder (BD) and its potential link to violent behavior. The research revealed a positive effect of ADHD symptoms on violence tendency and aggression scores. Moreover, male gender and young age were also found to have significant positive effects on violence and aggression scores, suggesting an association between these disorders and violent behavior.
Using Statistics New Zealand’s Integrated Data Infrastructure (IDI), a large database of linked de-identified administrative and survey data about people and households, a local study team examined a three-year birth cohort (mid-1992 through mid-1995) totaling 149,076 persons.
The team assessed the presence of ADHD within this cohort through diagnosis codes and inference from medication dispensing, where there was at least one code relating to an ADHD diagnosis in the medication datasets. This subgroup consisted of 3,975 persons.
Next, they related this information to criminal justice system interactions of increasing severity, starting with police proceedings, and continuing with court charges, court convictions, and incarcerations. These interactions were tracked during an eight-year period from participants’ 17th birthday through their 25th birthday.
In this same period the team also tracked types of offenses: against people; against property; against organizations, government, and community; and violent offenses.
In all cases, the study team adjusted for gender, ethnicity, deprivation, and area of residence as potential confounders.
With these adjustments, young adults with ADHD were over twice as likely as their typically developing peers to be proceeded against by police, to be charged with an offense, and to be convicted. They were almost five times as likely to be incarcerated.
With the same adjustments, young adults with ADHD were over twice as likely as their typically developing peers to be convicted of offenses against organizations, government, and community. They were almost three times as likely to be convicted of crimes against persons, and over three and a half times more likely to be convicted of either violent offenses or offenses against property.
The authors noted, “The greater effect size for incarceration observed in our study may be due to the lack of control for comorbid conditions such as CD [conduct disorder], which are known criminogenic risk factors.”
They also noted, “The sharp increase in the risk of incarceration observed may also signal differences in the NZ justice system’s approach to ADHD, which may be less responsive to the condition than other nations, particularly the steps in the justice system between conviction and sentence. This would suggest that the UNCRPD [United Nations Convention on the Rights of Persons with Disabilities] obligations of equal recognition before the law and the elimination of discrimination on the basis of disability are not being met for individuals with ADHD in NZ.”
They concluded, “Our findings revealed that not only were individuals with ADHD overrepresented at all stages of the CJS [criminal justice system] and offense types examined, there was also a pattern of increasing risk for CJS interactions as these individuals moved through the system. These results highlight the importance of early identification and responsivity to ADHD within the CJS and suggest that the NZ justice system may require changes to both of these areas to ensure that young individuals with ADHD receive equitable access to, and treatment within, the CJS.”
An international team of researchers conducted a comprehensive search of the peer-reviewed literature to perform a meta-analysis, with three aims:
1) assess the global prevalence of adult ADHD
2) explore possible associated factors
3) estimate the 2020 global population of persons with adult ADHD.
In doing so, they distinguished between studies requiring childhood-onset of ADHD to validate adult ADHD (persistent adult ADHD) and studies that make no such requirement and examine ADHD symptoms in adults regardless of previous childhood diagnosis (symptomatic adult ADHD).
The search yielded forty articles covering thirty countries. Twenty reported prevalence data on symptomatic adult ADHD, 19 on persistent adult ADHD, and one on both. Thirty-five studies were published in the last decade (2010-2019). Thirty-one included both urban and rural populations. Thirty-five had a quality score of six or above (out of ten). Twenty-five had sample sizes greater than a thousand.
Because the prevalence of ADHD is age-dependent, and different countries vary widely in the age structure of their populations, the authors adjusted country results for their structures. This allowed for meaningful global estimates of the prevalence of adult ADHD.
Twenty studies covering a total of 107,282 participants reported the prevalence of persistent adult ADHD. The pooled prevalence was 4.6%. After adjustment for the global population structure, the pooled prevalence was 2.6%, equivalent to roughly 140 million cases globally.
Twenty-one studies covering 50,098 participants reported on the prevalence of symptomatic adult ADHD. The pooled prevalence was 8.8%. After adjustment for the global population structure, the pooled prevalence was 6.7%, equivalent to roughly 366 million cases globally.
For persistent adult ADHD, adjusted prevalence declined steeply from 5% among 18- to 24-year-olds to 0.8% among those 60 and older.
For symptomatic adult ADHD, adjusted prevalence declined less steeply from 9% among 18- to 24-year-olds to 4.5% among that 60 and older.
In each case, subgroup analyses found no significant differences based on sex, urban or rural setting, diagnostic tool, DSM version, or investigation period, although pooled prevalence estimates of persistent adult ADHD from 2010 onward were almost twice the previous pooled prevalence estimates. For symptomatic adult ADHD, however, differences between WHO (World Health Organization) regions were highly significant, although the outliers(Southeast Asia at 25% and Eastern Mediterranean at 16%) were based on small samples(304 and 748 respectively).
In both cases, between-study heterogeneity was very high (over 97%). The authors noted, "the age of interviewed participants in the included studies was not unified, ranging from young adults to the elderly. Given the fact that the prevalence of adult ADHD decreases with advancing age, as revealed in previous investigations and our meta-regression, it is not surprising to observe such a diversity in the reported prevalence, and the considerable heterogeneity across included studies could not be fully ruled out by a priori selected variables, including diagnostic tool, DSM version, sex, setting, investigation period, WHO region, and WB [World Bank] region. The effects of other potential correlates of adult ADHD, such as ethnicity, were not able to be addressed due to the lack of sufficient information."
In both cases, there was also evidence of publication bias. The authors stated, "we did not try to eliminate publication bias in our analyses, because we deemed that an observed prevalence of adult ADHD that substantially differed from previous estimates was likely to have been published."
Background:
Sleep is more than simple rest. When discussing sleep, we tend to focus on the quantity rather than the quality, how many hours of sleep we get versus the quality or depth of sleep. Duration is an important part of the picture, but understanding the stages of sleep and how certain mental health disorders affect those stages is a crucial part of the discussion.
Sleep is an active mental process where the brain goes through distinct phases of complex electrical rhythms. These phases can be broken down into non-rapid eye movement (NREM) and rapid eye movement (REM). The non-rapid eye movement phase consists of three stages of the four stages of sleep, referred to as N1, N2(light sleep), and N3(deep sleep). N4 is the REM phase, during which time vivid dreaming typically occurs.
Two of the most important measurable brain rhythms occur during non-rapid eye movement (NREM) sleep. These electrical rhythms are referred to as slow waves and sleep spindles. Slow waves reflect deep, restorative sleep, while spindles are brief bursts of brain activity that support memory and learning.
The Study:
A new research review has compiled data on how these sleep oscillations differ across psychiatric conditions. The findings suggest that subtle changes in nightly brain rhythms may hold important clues about a range of disorders, from ADHD to schizophrenia.
The Results:
People with ADHD showed increased slow-spindle activity, meaning those brief bursts of NREM activity were more frequent or stronger than in people without ADHD. Why this happens isn’t fully understood, but it may reflect differences in how the ADHD brain organizes information during sleep. Evidence for slow-wave abnormalities was mixed, suggesting that deep sleep disruption is not a consistent hallmark of ADHD.
Among individuals with autism spectrum disorder (ASD), results were less consistent. However, some studies pointed to lower “spindle chirp” (the subtle shift in spindle frequency over time) and reduced slow-wave amplitude. Lower amplitude suggests that the brain’s deep-sleep signals may be weaker or less synchronized. Researchers are still working to understand how these patterns relate to sensory processing, learning differences, or daytime behavior.
People with depression tended to show reduced slow-wave activity and fewer or weaker sleep spindles, but this pattern appeared most strongly in patients taking antidepressant medications. Since antidepressants can influence sleep architecture, researchers are careful not to overinterpret the changes. Nevertheless, these changes raise interesting questions about how both depression and its treatments shape the sleeping brain.
In post-traumatic stress disorder (PTSD), the trend moved in the opposite direction. Patients showed higher spindle frequency and activity, and these changes were linked to symptom severity which suggests that the brain may be “overactive” during sleep in ways that relate to hyperarousal or intrusive memories. This strengthens the idea that sleep physiology plays a role in how traumatic memories are processed.
The clearest and most reliable findings emerged in psychotic disorders, including schizophrenia. Across multiple studies, individuals showed: Lower spindle density (fewer spindles overall), reduced spindle amplitude and duration, correlations with symptom severity, and cognitive deficits.
Lower slow-wave activity also appeared, especially in the early phases of illness. These results echo earlier research suggesting that sleep spindles, which are generated by thalamocortical circuits, might offer a window into the neural disruptions that underlie psychosis.
The Take-Away:
The review concludes with a key message: While sleep disturbances are clearly present across psychiatric conditions, the field needs larger, better-standardized, and more longitudinal studies. With more consistent methods and longer follow-ups, researchers may be able to determine whether these oscillations can serve as reliable biomarkers or future treatment targets.
For now, the take-home message is that the effects of these mental health disorders on sleep are real and measurable.
Many studies have shown that ADHD is associated with increased risks of suicidal behavior, substance misuse, injuries, and criminality. As we often discuss in our blogs, treatments for ADHD include medication and non-medication options, such as CBT (Cognitive Behavioral Therapy). While non-drug approaches are often used for young children or mild cases of ADHD, medications – both stimulants and non-stimulants – are common for adolescents and adults.
Global prescriptions for ADHD drugs have risen significantly in recent years, raising questions about their safety and effectiveness. Randomized controlled trials have demonstrated that medication can help reduce the core symptoms of ADHD. However, research from these trials still offers limited or inconclusive insights into wider and more significant clinical outcomes, such as suicidal behavior and substance use disorder.
An international study team conducted a nationwide population study using the Swedish national registers. Sweden has a single-payer national health insurance system, which covers nearly every resident, enabling such studies. The researchers examined all Swedish residents aged 6 to 64 who received their first ADHD diagnosis between 2007 and 2018. Analyses of criminal behavior and transport accidents focused on a subgroup aged 15 to 64, since individuals in Sweden must be at least 15 years old to be legally accountable for crimes or to drive.
The team controlled for confounding factors, including demographics (age at ADHD diagnosis, calendar year, sex, country of birth, highest education (using parental education for those under 25), psychiatric and physical diagnoses, dispensations of psychotropic drugs, and health care use (outpatient visits and hospital admissions for both psychiatric and non-psychiatric reasons).
Time-varying covariates from the previous month covered diagnoses, medication dispensations, and healthcare use. During the study, ADHD treatments licensed in Sweden included amphetamine, atomoxetine, dexamphetamine, guanfacine, lisdexamphetamine, and methylphenidate.
After accounting for covariates, individuals diagnosed with ADHD who received medication treatment showed better outcomes than those who did not. Specifically:
-Suicidal behaviors dropped by roughly 15% in both first-time and recurrent cases.
-Initial criminal activity decreased by 13%, with repeated offences falling by 25%.
-Substance abuse initiation declined by 15%, while recurring substance abuse was reduced
by 25%.
-First automotive crashes were down 12%, and subsequent crashes fell by 16%.
There was no notable reduction in first-time accidental injuries, and only a marginally significant 4% decrease in repeated injuries.
The team concluded, “Drug treatment for ADHD was associated with beneficial effects in reducing the risks of suicidal behaviours, substance misuse, transport accidents, and criminality, but not accidental injuries when considering first event rate. The risk reductions were more pronounced for recurrent events, with reduced rates for all five outcomes.”
Background:
Pharmacotherapies, such as methylphenidate, are highly effective for short-term ADHD management, but issues remain with medication tolerability and adherence. Some patients experience unwanted side effects from stimulant medications, leaving them searching for alternative ADHD treatments. Alternative treatments such as cognitive training, behavioral therapies, psychological interventions, neurofeedback, and dietary changes have, so far, shown limited success. Thus, there is a critical need for non-pharmacological options that boost neurocognitive performance and address core ADHD symptoms.
First— What Are NIBS (Non-Invasive Brain Stimulation) Techniques?
Non-invasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), transcranial alternating current stimulation (tACS), and repetitive transcranial magnetic stimulation (rTMS) are generating growing attention within the scientific community.
NIBS techniques are methods that use external stimulation, such as magnets or electrical currents, to affect brain activity without any invasive procedures. In transcranial alternating current stimulation (tACS), for example, small electrodes are placed on the scalp of the patient, and a weak electrical current is administered.
The theory behind these techniques is that when a direct current is applied between two or more electrodes placed on specific areas of the head, it makes certain neurons more or less likely to fire. This technique has been successfully used to treat conditions like depression and anxiety, and to aid recovery from stroke or brain injury.
The Study:
Previous meta-analyses have produced conflicting indications of efficacy. A Chinese research team consisting of sports and rehabilitative medicine professionals has just published a network meta-analysis to explore this further, through direct comparison of five critical outcome domains: inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity and impulsivity.
To be included, randomized controlled trials needed to have participants diagnosed with ADHD, use sham control groups, and assess ADHD symptoms and executive functions – such as inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity, and impulsivity – using standardized tests.
A total of thirty-seven studies encompassing 1,615 participants satisfied the inclusion criteria. It is worth noting, however, that the authors did not specify the number of randomized controlled trials nor the number of participants included in each arm of the network meta-analysis.
Furthermore, the team stated, “We checked for potential small study effects and publication bias by conducting comparison-adjusted funnel plots,” but did not share their findings. They also did not provide information on outcome variation (heterogeneity) among the RCTs.
Results:
Ultimately, none of the interventions produced significant improvements in ADHD symptoms, whether in inattention symptoms or hyperactivity/impulsivity symptoms. Likewise, none of the interventions produced significant improvements in inhibitory control. Some tDCS interventions enhanced working memory and cognitive flexibility, but details about trial numbers and participants were missing. The team concluded, “none of the NIBS interventions significantly improved inhibitory control compared to sham controls. … In terms of working memory, anodal tDCS over the left DLPFC plus cathodal tDCS over the right DLPFC … and anodal tDCS over the right inferior frontal cortex (rIFC) plus cathodal tDCS over the right supraorbital area ... were associated with significant improvements compared to sham stimulation. For cognitive flexibility, only anodal tDCS over the left DLPFC plus cathodal tDCS over the right supraorbital area demonstrated a statistically significant benefit relative to sham. ... Compared to the sham controls, none of the NIBS interventions significantly improved inattention. ... Compared to the sham controls, none of the NIBS interventions significantly improved hyperactivity and impulsivity.”
How Should We Interpret These Results?
In a word, skeptically.
If one were to read just the study’s abstract, which states, “The dual-tDCS and a-tDCS may be considered among the preferred NIBS interventions for improving cognitive function in ADHD”, it might seem that the takeaway from this study is that this combination of brain stimulation techniques might be a viable treatment option for those with ADHD. Upon closer inspection, however, the results do not suggest that any of these methods significantly improve ADHD symptoms. Additionally, this study suffers from quite a few methodological flaws, so any results should be viewed critically.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
X
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
X