December 15, 2025

Meta-analysis Finds Tenuous Links Between ADHD and Thyroid Hormone Dysregulation

The Background:

Meta-analyses have previously suggested a link between maternal thyroid dysfunction and neurodevelopmental disorders (NDDs) in children, though some studies report no significant difference. Overweight and obesity are more common in children and adolescents with NDDs. Hypothyroidism is often associated with obesity, which may result from reduced energy expenditure or disrupted hormone signaling affecting growth and appetite. These hormone-related parameters could potentially serve as biomarkers for NDDs; however, research findings on these indicators vary. 

The Study:

A Chinese research group recently released a meta-analysis examining the relationship between neurodevelopmental disorders (NDDs) and hormone levels – including thyroid, growth, and appetite hormones – in children and adolescents.  

The analysis included peer-reviewed studies that compared hormone levels – such as thyroid hormones (FT3, FT4, TT3, TT4, TSH, TPO-Ab, or TG-Ab), growth hormones (IGF-1 or IGFBP-3), and appetite-related hormones (leptin, ghrelin, or adiponectin) – in children and adolescents with NDDs like ADHD, against matched healthy controls. To be included, NDD cases had to be first-diagnosis and medication-free, or have stopped medication before testing. Hormone measurements needed to come from blood, urine, or cerebrospinal fluid samples, and all studies were required to provide both means and standard deviations for these measurements. 

Meta-analysis of nine studies encompassing over 5,700 participants reported a medium effect size increase in free triiodothyronine (FT3) in children and adolescents with ADHD relative to healthy controls. There was no indication of publication bias, but variation between individual study outcomes (heterogeneity) was very high. Further analysis showed FT3 was only significantly elevated in the predominantly inattentive form of ADHD (three studies), again with medium effect size, but not in the hyperactive/impulsive and combined forms

Meta-analysis of two studies combining more than 4,800 participants found a small effect size increase in thyroid peroxidase antibody (TPO-Ab) in children and adolescents with ADHD relative to healthy controls. In this case, the two studies had consistent results. Because only two studies were involved, there was no way to evaluate publication bias. 

The remaining thyroid hormone meta-analyses, involving 6 to 18 studies and over 5,000 participants in each instance, found no significant differences in levels between children and adolescents with ADHD and healthy controls

Meta-analyses of six studies with 317 participants and two studies with 192 participants found no significant differences in growth hormone levels between children and adolescents with ADHD and healthy controls. 

Finally, meta-analyses of nine studies with 333 participants, five studies with 311 participants, and three studies with 143 participants found no significant differences in appetite-related hormone levels between children and adolescents with ADHD and healthy controls. 

The Conclusion:

The team concluded that FT3 and TPO-Ab might be useful biomarkers for predicting ADHD in youth. However, since FT3 was only linked to inattentive ADHD, and TPO-Ab’s evidence came from just two studies with small effects, this conclusion may overstate the meta-analysis results. 

Our Take-Away:

Overall, this meta-analysis found only limited evidence that hormone differences are linked to ADHD. One thyroid hormone (FT3) was higher in children with ADHD—mainly in the inattentive presentation—but the findings varied widely across studies. Another marker, TPO-Ab, showed a small increase, but this came from only two studies, making the result less certain. For all other thyroid, growth, and appetite-related hormones, the researchers found no meaningful differences between children with ADHD and those without. While FT3 and TPO-Ab may be worth exploring in future research, the current evidence is not strong enough to consider them reliable biomarkers.

 

Hong Wang, Kun Huang, Lizhen Piao, and Xiaochen Xue, “Dysregulation of Thyroid, Growth, and Appetite Hormones in Children and Adolescents With Neurodevelopmental Disorders: A Meta-analysis,” Journal of Integrative Neuroscience (2025) 24(10), 39816,  https://doi.org/10.31083/JIN39816

Related posts

The Role of Serotonin in ADHD and Its Many Comorbidities

Serotonin is a key chemical in the body that helps regulate mood, behavior, and also many physical functions such as sleep and digestion. It has also been linked to how ADHD (attention-deficit/hyperactivity disorder) develops in the brain. This study looks at how serotonin may be involved in both the mental health and physical health conditions that often occur alongside ADHD.

It is well-established that ADHD is more than just trouble focusing or staying still. For many, it brings along a host of other physical and mental health challenges. It is very common for those with ADHD to also have other diagnosed disorders. For example, those with ADHD are often also diagnosed with depression, anxiety, or sleep disorders. When these issues overlap, they are called comorbidities. 

A new comprehensive review, led by Dr. Stephen V. Faraone and colleagues, delves into how serotonin (5-HT), a major brain chemical, may be at the heart of many of these common comorbidities.

Wait! I thought ADHD had to do with Dopamine–Why are we looking at Serotonin?

Serotonin is a neurotransmitter most often linked to mood, but its role in regulating the body has much broader implications. It regulates sleep, digestion, metabolism, hormonal balance, and even immune responses. Although ADHD has long been associated with dopamine and norepinephrine dysregulation, this review suggests that serotonin also plays a central role, especially when it comes to comorbid conditions.

The Study:

  • Objective: To systematically review which conditions commonly co-occur with ADHD and determine whether serotonin dysfunction might be a common thread linking them.

  • Method: The authors combed through existing literature up to March 2024, analyzing evidence for serotonin involvement in each comorbidity associated with ADHD.

  • Scope: 182 psychiatric and somatic conditions were found to frequently occur in people with ADHD.

Key Findings

  • 74% of Comorbidities Linked to Serotonin: Of the 182 comorbidities identified, 135 showed evidence of serotonergic involvement—91 psychiatric and 44 somatic (physical) conditions.

  • Psychiatric Comorbidities: These include anxiety disorders, depression, bipolar disorder, and obsessive-compulsive disorder—all of which have long-standing associations with serotoninergic dysfunction.

  • Somatic Comorbidities: Conditions like irritable bowel syndrome (IBS), migraines, and certain sleep disorders also showed a significant serotonergic link.

This research suggests that serotonin dysregulation could explain the diverse and sometimes puzzling range of symptoms seen in ADHD patients. It supports a more integrative model of ADHD—one that goes beyond the brain’s attention, reward and executive control circuits and considers broader physiological and psychological health.

future research into the role of serotonin could help develop more tailored interventions, especially for patients who don't respond well to stimulant medications. Future studies may focus on serotonin’s role in early ADHD development and how it interacts with environmental and genetic factors.

The Take-Away: 

This study is a strong reminder that ADHD is a complex, multifaceted condition. Differential diagnosis is crucial to properly diagnosing and treating ADHD. Clinicians' understanding of the underlying link between ADHD and its common comorbidities may help future ADHD patients receive the individualized care they need. By shedding light on serotonin’s wide-reaching influence, this study may provide a valuable roadmap for improving how we diagnose and treat those with complex comorbidities in the future. 

July 14, 2025

Combined meta-analysis and nationwide population study indicates ADHD by itself has negligible effect on risk of type 2 diabetes

Study Indicates ADHD By Itself Has Negligible Effect on Risk of Type 2 Diabetes

Noting that “evidence on the association between ADHD and a physical condition associated with obesity, namely type 2 diabetes mellitus (T2D), is sparse and has not been meta-analysed yet,” a European study team performed a systematic search of the peer-reviewed medical literature followed by a meta-analysis, and then a nationwide population study.

Unlike type 1 diabetes, which is an auto-immune disease, type 2 diabetes is believed to be primarily related to lifestyle, associated with insufficient exercise, overconsumption of highly processed foods, and especially with large amounts of refined sugar. This leads to insulin resistance and excessively high blood glucose levels that damage the body and greatly lower life expectancy.

Because difficulty with impulse control is a symptom of ADHD, one might hypothesize that individuals with ADHD would be more likely to develop type-2 diabetes. 

The meta-analysis of four cohort studies encompassing more than 5.7 million persons of all ages spread over three continents (in the U.S., Taiwan, and Sweden) seemed to point in that direction. It found that individuals with ADHD had more than twice the odds of developing type 2 diabetes than normally developing peers. There was no sign of publication bias, but between-study variability (heterogeneity) was moderately high.

The nationwide population study of over 4.2 million Swedish adults came up with the same result when adjusting only for sex and birth year. 

Within the Swedish cohort there were 1.3 million families with at least two full siblings. Comparisons among siblings with and without ADHD again showed those with ADHD having more than twice the odds of developing type 2 diabetes. That indicated there was little in the way of familial confounding.

However, further adjusting for education, psychiatric comorbidity, and antipsychotic drugs dropped those higher odds among those with ADHD in the overall population to negligible (13% higher) and barely significant levels. 

The drops were particularly pronounced for psychiatric comorbidities, especially anxiety, depression, and substance use disorders, all of which had equal impacts.

The authors concluded, “This study revealed a significant association between ADHD and T2D [type 2 diabetes] that was largely due to psychiatric comorbidities, in particular SUD [substance use disorders], depression, and anxiety. Our findings suggest that clinicians need to be aware of the increased risk of developing T2D in individuals with ADHD and that psychiatric comorbidities may be the main driver of this association. Appropriate identification and treatment of these psychiatric comorbidities may reduce the risk for developing T2D in ADHD, together with efforts to intervene on other modifiable T2D risk factors (e.g., unhealthy lifestyle habits and use of antipsychotics, which are common in ADHD), and to devise individual programs to increase physical activity. Considering the significant economic burden of ADHD and T2D, a better understanding of this relationship is essential for targeted interventions or prevention programs with the potential for a positive impact on both public health and the lives of persons living with ADHD.”

Swedish Twin Study Finds Association Between Diet and ADHD

Associations between diet and ADHD emerge from Swedish population-based twin study

Sweden has a national single-payer health insurance system that includes virtually the entire population. It also has a system of national registers that track every resident from birth to death. That makes it possible to conduct nationwide population studies with a very high degree of precision and reliability.

In addition, one of the national registers is the Swedish Twin Register. Tracking all twins in the population enables studies to evaluate the degree to which observed associations may be attributable to genetic influences and to familial confounding. The twin method relies on the different levels of genetic relatedness between monozygotic ("identical") twins, who are genetically identical, and dizygotic ("fraternal") twins, who share on average half of their genetic variation (as do ordinary full siblings).

A Swedish team of researchers identified 42,582 Swedish twins born between 1959 and 1985, and who were, therefore, adults by the time of the study (20-47 years old). Of these, 24,872 (three out of five) completed a web-based survey with 1,300 questions covering lifestyle and mental and physical health. Out of this group, 17,999 provided information on ADHD symptoms and food frequency.

Self-reported ADHD symptoms came from nine inattention components and nine hyperactivity/impulsivity components, covering the 18 DSM- IV symptoms of ADHD.

The food frequency questionnaire included 94 food items, with the following frequency categories: never, 1-3 times/month, 1-2 times/week, 3-4 times/week, 5-6 times/week, 1 time/day, 2 times/day, 3 times/day.

In the raw data, the two subtypes of ADHD exhibited very similar associations. Both had significant associations with unhealthy diets. Both were more likely to be eating foods high in added sugar, and neglecting fruits and vegetables while eating more meat and fats.

After adjusting for the degree of relatedness of twins (whether monozygotic or dizygotic) and controlling for the other ADHD subtype, the associations remained statistically significant for inattention, but diminished to negligible levels or became statistically non-significant for hyperactivity/impulsivity.

Even for persons with inattention symptoms, adjusted correlations were small (never exceeding r = 0.10), with the strongest associations being for overall unhealthy eating habits (r = 0.09), eating foods high in added sugar (r = 0.10) or high in fat (r = 0.05), and neglecting fruits and vegetables (r = 0.06). All other associations became statistically non-significant.

For persons with hyperactivity/impulsivity symptoms, the only associations that remained statistically significant ­- but at tiny effect sizes - were unhealthy dietary patterns (r = 0.04) and consumption of foods high in added sugar (r = 0.03).

The further genetic analysis, therefore, focused on the strongest associations, between ADHD subtypes on the one hand, and unhealthy dietary patterns and eating foods high in added sugar on the other hand. The heritability estimates (the fraction of phenotypic covariance explained by genetic influences) were 44%, 40%, and 37% for inattention and high-sugar food, inattention and unhealthy dietary patterns, and hyperactivity/impulsivity and high-sugar food, respectively.

 When examining only differences between pairs of monozygotic("identical") twins, the correlations became stronger for inattention, rising to r = 0.12 for unhealthy eating habits and r = 0.13 for consumption of foods high in added sugar. For hyperactivity/impulsivity symptoms, the association with unhealthy eating habits was weaker, and the association with consumption of foods high in added sugar became statistically insignificant.

The authors concluded, "we identified positive associations between self-reported trait dimensions of ADHD and intake of seafood, high-fat food, high-sugar food, high-protein food, and an unhealthy dietary pattern, and negative associations with consumption of fruits, vegetables, and a healthy dietary pattern. However, all the associations are small in magnitude. These associations were stronger for inattention compared to hyperactivity/ impulsivity. This pattern of associations was also reflected at the etiological level, where we found a slightly stronger genetic correlation between inattention with dietary habits and hyperactivity/impulsivity with dietary habits. Non-shared environmental influences also contributed to the overlap between ADHD symptom dimensions and consumption of high-sugar food and unhealthy dietary pattern. However, shared environmental influences probably contributed relatively little to the associations between ADHD symptoms and dietary habits. ... significant MZ twin intraplate differences also provided support for a potential causal link between inattention and dietary habits.

November 29, 2021

South Korean Nationwide Population Study: Prenatal Exposure to Acid-suppressive Medications Not Linked to Subsequent ADHD

Acid-suppressive medications, including proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists, are often prescribed during pregnancy to treat heartburn and gastroesophageal reflux disease. 

Research shows changes in the gut microbiome can negatively affect neurodevelopment. Since acid-suppressive medications alter gut microbiota, maternal use during pregnancy may impact offspring’s neurodevelopment. Because PPIs and H2 receptor antagonists readily cross the placental barrier, they could potentially influence fetal neurodevelopment.  

The link between prenatal exposure to acid-suppressive medications and major neuropsychiatric disorders is not well understood. With the use of these medications during pregnancy rising, it is important to assess their impact on children's long-term neurodevelopment. This study examined whether maternal use of acid-suppressive drugs is associated with increased risk of neuropsychiatric disorders in children, using a large, nationwide birth cohort from South Korea. 

South Korea operates a single-payer health insurance system, providing coverage for over 97% of its citizens. The National Health Insurance Service (NHIS) maintains a comprehensive database with sociodemographic details, medical diagnoses, procedures, prescriptions, health examinations, and vital statistics for all insured individuals. 

A Korean research team analyzed data from over three million mother-child pairs (2010–2017) to assess the risks of prenatal exposure to acid-suppressing medications. They applied propensity scoring to adjust for maternal age, number of children, medical history, and outpatient visits before pregnancy, to minimize confounding factors. That narrowed the cohort to just over 800,000 pairs, with half in the exposed group. 

With these adjustments, prenatal exposure to acid-suppressing medications was associated with 14% greater likelihood of being subsequently diagnosed with ADHD. 

Yet, when 151,737 exposed births were compared to the same number of sibling controls, no association was found between prenatal exposure and subsequent ADHD, which suggests unaccounted familial and genetic factors influenced the preceding results. 

The Take-Away:

Evidence of these medications negatively affecting pregnancies is mixed, mostly observational, and generally reassuring when these medications are used appropriately. Untreated GERD and gastritis, however, have known risks and associations with the development of various cancers. With no evidence of an association with ADHD (or for that matter any other neuropsychiatric disorder), there is no current evidence-based reason for expectant mothers to discontinue use of acid-suppressing medications.  

February 6, 2026

The 'Medication Tolerance' Myth in ADHD: What the Evidence Actually Says

For years, a persistent concern has shadowed the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD): Does the medication eventually stop working? Patients often report that their symptoms seem to return despite consistent use, leading to "dose escalation" or "medication holidays." A new systematic review from Sam Cortese’s team  published in CNS Drugs finally puts these concerns to the test by synthesizing decades of empirical research.

Before diving into the findings, you must understand two often-confused phenomena:

  • Tachyphylaxis (Acute Tolerance): A rapid decrease in response to a drug, often occurring within a single day (24 hours).
  • Tolerance: A gradual reduction in responsiveness over long-term exposure, requiring higher doses to achieve the original effect.

The review analyzed 17 studies covering over 10,000 individuals, and the results provide a much-needed reality check for the clinical community.

The researchers found preliminary evidence that acute tolerance (tachyphylaxis) can occur within a 24-hour window.

  • Subjective Effects: Studies showed that "drug liking" or feelings of euphoria from stimulants often peak and fade faster than the actual drug concentration in the blood.
  • Clinical Impact: This phenomenon is why some older, flat-release formulations were less effective than modern "ascending" delivery systems (like OROS-methylphenidate), which are designed to overcome this daily dip in efficacy.

The most important finding is that tolerance does not commonly develop to the therapeutic effects of ADHD medication in the long term. In one landmark study following children for up to 10 years, only 2.7% of participants lost their response to methylphenidate without a clear external explanation.  Doses, when adjusted for natural body growth, remained remarkably stable over years of treatment.

Consistent with the lack of therapeutic tolerance, the body does not become tolerant to the physical side effects of stimulants.  Increases in heart rate and blood pressure typically persist for as long as the medication is taken.  This underscores why clinicians must continue monitoring cardiovascular health throughout the entire duration of treatment.

If it’s Not Tolerance, What Is It?

If "tolerance" isn't real, why do some patients feel their medication is failing? The review suggests clinicians look at these alternative explanations:

  1. Natural Symptom Fluctuations: ADHD is not a static condition; symptoms naturally wax and wane over time regardless of treatment.
  2. Limited Compliance: Missed doses or inconsistent timing are often the real culprits behind "failing" efficacy.
  3. Life Events & Transitions: New jobs, academic pressures, or stressful life changes can increase the "functional demand" on a patient, making their current dose feel insufficient.
  4. Co-occurring Conditions: The emergence of anxiety, depression, or substance use disorders can mask or mimic a return of ADHD symptoms.

Why This Matters

These results provide clinicians the confidence to tell patients that their medication is unlikely to "wear out" permanently. Rather than immediately increasing a dose when symptoms flare, the first step should be a "clinical deep dive" into the patient's lifestyle, stress levels, and adherence.

For researchers, the review highlights a major gap: most existing studies are small, dated, or of low quality. There is a dire need for robust, longitudinal studies that track both the brain's response and the patient's environment over several years.

For people with ADHD, while your body might get "used to" the initial "buzz" of a stimulant within hours, its ability to help you focus and manage your life remains remarkably durable over the years.

Population Study Finds Association Between Extended Methylphenidate Use By Children and Subsequent Obesity

South Korean Nationwide Population Study Finds Association Between Extended Methylphenidate Use By Children and Subsequent Obesity–Little to No Effect on Adult Height

South Korean Nationwide Population Study Finds Association Between Extended Methylphenidate Use By Children and Subsequent Obesity–Little to No Effect on Adult Height

The Background:

Concerns remain about how ADHD and methylphenidate (MPH) use might affect children's health and growth, and especially how it may affect their adult height. While some studies suggest disrupted growth and a possible biological mechanism, the impact of ADHD prevalence and MPH use is still unclear. Children with ADHD may develop unhealthy habits – irregular eating, low physical activity, and poor sleep – that can contribute to obesity and reduced height. MPH’s appetite-suppressing effect can lead to skipped meals or overeating. Since growth hormone is mainly released during deep sleep, chronic sleep deprivation could plausibly slow growth and impair height development; however, a clear link between ADHD, MPH use, overweight, and shorter stature has never been firmly established. 

The Study:

South Korea has a single payer health insurance system that covers more than 97% of its population. A Korean research team used the National Health Insurance Service database to perform a nationwide population study to explore this topic further. 

The study involved 34,850 children, of whom 12,866 were diagnosed with ADHD. Of these children, 6,816 (53%) had received methylphenidate treatment, while 6,050 (47%) had not. Each patient with ADHD was precisely matched 1:1 by age, sex, and income level to a control participant without ADHD. The sex ratio was comparable in all groups.The team used Body Mass Index (BMI) as an indicator of overweight and obesity. 

The Results: 

The researchers found that being diagnosed with ADHD was associated with 50% greater odds of being overweight or obese as young adults, and over 70% greater odds of severe obesity (BMI > 30) compared to matched non-ADHD controls, regardless of whether or not they were medicated.

Those diagnosed with ADHD, but not on methylphenidate, had 40% greater odds of being overweight or obese, and over 55% greater odds of becoming severely obese, relative to matched non-ADHD controls. 

Methylphenidate users had 60% greater odds of being overweight or obese, and over 85% greater odds of becoming severely obese, relative to matched non-ADHD controls. 

There were signs of a dose-response effect. Less than a year’s exposure to methylphenidate was associated with roughly 75% greater odds of becoming severely obese, whereas exposure over a year or more raised the odds 2.3-fold, relative to matched non-ADHD controls. Using MPH increased the prevalence of overweight from 43.2% to 46.5%, with a greater prevalence among those using MPH for more than one year (50.5%).

It is important to note that most of this effect was from ADHD itself, with methylphenidate only assuming a predominant role in severe obesity among those with longer-term exposure to the medicine. 

As for height, children with ADHD were no more likely to be short of stature than matched non-ADHD controls. Being prescribed methylphenidate was associated with slightly greater odds (7%) of being short of stature, but there was no dose-response relationship. 

Conclusion: 

The team concluded, “patients with ADHD, particularly those treated with MPH, had a higher BMI and shorter height at adulthood than individuals without ADHD. Although the observed height difference was clinically small in both sexes and age groups, the findings suggest that long-term MPH exposure may be associated with growth and body composition, highlighting the need for regular monitoring of growth.” They also point out that “Despite these findings, the clinical relevance should be interpreted with caution. In our cohort, the mean difference in height was less than 1 cm (eg, maximum −0.6 cm in females) below commonly accepted thresholds for clinical significance.”  Likewise, increases in overweight/BMI were small. 

One problem with interpreting the BMI/obesity results is that some of the genetic variants that cause ADHD also cause obesity.  If that genetic load increases with severity of ADHD than the results from this study are confounded because those with more severe ADHD are more likely to be treated than those with less severe ADHD.

Due to these small effects along with the many study limitations noted by the authors, these results should be considered alongside the well-established benefits of methylphenidate treatment.

February 2, 2026