May 22, 2025

Meta-analysis finds benefits of transcranial direct current stimulation for ADHD symptoms and executive function—but evidence remains weak

Background

A meta-analysis examined whether noninvasive brain stimulation (NIBS) techniques could help reduce core symptoms of ADHD and improve cognitive function. NIBS refers to techniques that stimulate brain activity using low electrical or magnetic currents applied from outside the head. They studied transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), while newer methods like tRNS (random noise) and tACS (alternating current) lacked enough studies to be included in the analysis.

Methods

Only randomized controlled trials (RCTs)—considered the gold standard in clinical research—were included in the review. For tDCS, the results were promising:

-A meta-analysis of 12 studies (582 participants) showed small but statistically significant improvements in inhibitory control (the ability to stop or delay responses).

-Nine studies (390 participants) showed small-to-medium improvements in working memory.

-Two smaller studies (94 participants) hinted at improvement in cognitive flexibility, but the results were not strong enough to be considered reliable.

-Seven studies (277 participants) found medium-to-large improvements in linattention, though results varied significantly between studies.

 Hyperactivity and impulsivity showed some improvement, but again, the number of studies was too small to draw firm conclusions.

 For rTMS, however, the results were not as encouraging. A meta-analysis of three studies (137 participants) found no significant improvement in ADHD symptoms.

Conclusion

While the results suggest that tDCS may offer some benefit for executive functions and attention in people with ADHD—especially when targeting specific brain areas like the F3/F4 regions (roughly over the dorsolateral prefrontal cortex)—the authors emphasize the need for further research. Most studies didn’t include long-term follow-up, and there’s still a lack of consistency in how stimulation is applied across studies.  Moreover, even when positive findings emerged for executive functions is not clear how these translate into changes that are meaningful for the patient.

Importantly, this study doesn’t suggest that NIBS should replace standard treatments. Although the paper highlights challenges with medication adherence and side effects, ADHD medications and behavior therapies remain the most well-established and effective treatments for most patients. The improvements seen with NIBS so far are relatively small and preliminary in comparison.

Instead, the findings support the idea that NIBS could one day serve as a complementary tool—especially for individuals who don’t respond well to existing treatments. But until more rigorous and long-term studies are done, NIBS should be viewed as an experimental approach, not a substitute.

 

 

 

Yao Yin, Xueke Wang, and Tingyong Feng, “Noninvasive Brain Stimulation for Improving Cognitive Deficits and Clinical Symptoms in Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis,” Brain Sciences (2024), 14, 1237, https://doi.org/10.3390/brainsci14121237.

Related posts

Can Computers Train the Brain to Cure ADHD?

Can Computers Train the Brain to Cure ADHD?

It sounds like science fiction, but scientists have been testing computerized methods to train the brains of ADHD people to reduce both ADHD symptoms and cognitive deficits such as difficulties with memory or attention.  

Two main approaches have been used: cognitive training and neurofeedback. Cognitive training methods ask patients to practice tasks aimed at teaching specific skills, such as retaining information in memory or inhibiting impulsive responses.

Currently, results from ADHD brain studies suggest that the ADHD brain is not very different from the non-ADHD brain, but that ADHD leads to small differences in the structure, organization, and functioning of the brain. The idea behind cognitive training is that the brain can be reorganized to accomplish tasks through a structured learning process. Cognitive retraining helps people who have suffered brain damage, so it was logical to think it might help the types of brain differences seen in ADHD people. Several software packages have been created to deliver cognitive training sessions to ADHD people.

Neurofeedback was applied to ADHD after it had been observed, in many studies, that people with ADHD have unusual brain waves as measured by the electroencephalogram (EEG). We believe that these unusual brain waves are caused by the different ways that the ADHD brain processes information. Because these differences lead to problems with memory, attention, inhibiting responses, and other areas of cognition and behavior, it was believed that normalizing the brain waves might reduce ADHD symptoms.

In a neurofeedback session, patients sit with a computer that reads their brain waves via wires connected to their heads. The patient is asked to do a task on the computer that is known to produce a specific type of brain wave.  The computer gives feedback via sound or a visual on the computer screen that tells the patient how 'normal' their brainwaves are. By modifying their behavior, patients learn to change their brain waves. The method is called neurofeedback because it gives patients direct feedback about how their brains are processing information.

Both cognitive training and neurofeedback have been extensively studied. If you've been reading my blogs about ADHD, you know that I play by the rules of evidence-based medicine. My view is that the only way to be sure that a treatment works is to see what researchers have published in scientific journals. The highest level of evidence is a meta-analysis of randomized controlled clinical trials. This ensures that many rigorous studies have been conducted and summarized with a sophisticated mathematical method.  

Although both cognitive training and neurofeedback are rational methods based on good science, meta-analyses suggest that they do not help reduce ADHD symptoms. They may be helpful for specific problems, such as problems with memory, but more work is needed to be certain if that is true. The future may bring better news about these methods if they are modified and become more effective. You can learn more about non-pharmacologic treatment for ADHD from a book I recently edited: Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.

October 5, 2023

Transcranial Direct Current Stimulation: Can It Treat ADHD?

How effective and safe is transcranial direct current stimulation for treating ADHD?

ADHD is hypothesized to arise from 1) poor inhibitory control resulting from impaired executive functions which are associated with reduced activation in the dorsolateral prefrontal cortex and increased activation of some subcortical regions; and 2)hyperarousal to environmental stimuli, hampering the ability of the executive functioning system, particularly the medial frontal cortex, orbital and ventromedial prefrontal areas, and subcortical regions such as the caudate nucleus, amygdala, nucleus accumbens, and thalamus, to control the respective stimuli.

These brain anomalies, rendered visible through magnetic resonance imaging, have led researchers to try new means of treatment to directly address the deficits. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that uses a weak electrical current to stimulate specific regions of the brain.

Efficacy:

A team of researchers from Europe and ran performed a systematic search of the literature and identified fourteen studies exploring the safety and efficacy of tDCS. Three of these studies examined the effects on ADHD symptoms. They found a large effect size for the inattention subscale and a medium effect size for the hyperactivity/impulsivity. Yet, as the authors cautioned, "a definite conclusion concerning the clinical efficacy of tDCS based on the results of these three studies is not possible."

The remaining studies investigated the effects on specific neuropsychological and cognitive deficits in ADHD:

  •  Working memory was improved by anodal stimulation - but not cathodal stimulation - of the left dorsolateral prefrontal cortex. Anodal stimulation of the right inferior frontal gyrus had no effect.
  •  Response inhibition: Anodal stimulation of the left or right dorsolateral prefrontal cortex was more effective than anodal stimulation of the bilateral prefrontal cortex.
  • Motivational and emotional processing was improved only with stimulation of both the dorsolateral prefrontal cortex and orbitofrontal cortex.

The fact that heterogeneity in the methodology of these studies made meta-analysis impossible means these results, while promising, cannot be seen as in any way definitive.

Safety:

Ten studies examined childhood ADHD. Three found no adverse effects either during or after tDCS. One study reported a feeling of "shock" in a few patients during tDCS. Several more reported skin tingling and itching during tDCS. Several also reported mild headaches.

The four studies of adults with ADHD reported no major adverse events. One study reported a single incident of acute mood change, sadness, diminished motivation, and tension five hours after stimulation. Another reported mild instances of skin tingling and burning sensations.

To address side effects such as tingling and itching, the authors suggested reducing the intensity of the electrical current and increasing the duration. They also suggested placing electrodes at least 6 cm apart to reduce current shunting through the ski. For children, they recommended the use of smaller electrodes for better focus in smaller brains.

The authors concluded, "The findings of this systematic review suggest at least a partial improvement of symptoms and cognitive deficits in ADHD by tDCS. They further suggest that stimulation parameters such as polarity and site are relevant to the efficacy of tDCS in ADHD. Compared to cathodal stimulation, Anodal tDCS seems to have a superior effect on both the clinical symptoms and cognitive deficits. However, the routine clinical application of this method as an efficient therapeutic intervention cannot yet be recommended based on these studies ..."

January 10, 2022

Digital Media Use and ADHD

Digital Media Use and ADHD

A two-year study examined the effect of digital media use on ADHD symptoms in over 2500 adolescents. An earlier meta-analysis found that traditional media use (TV and video console games) was modestly associated with ADHD-like behaviors (Nikkelen et al 2014). The current study extends the examination to a large sample, with modern digital media delivery of high-intensity stimuli, including mobile platforms.

The authors used the Current Symptom Self-Report Scale (Barkley R 1998) to establish ADHD symptoms at baseline and six-month assessments over 24 months. None of the subjects reported having ADHD, study entry. Subjects were considered to be ADHD symptom-positive (the primary binary outcome) if they had greater than or equal to six inattentive and/or hyperactive-impulsive symptoms rated on this frequency-based scale (0-3). Modern digital media use was surveyed on a frequency basis for 14 media activities(including checking social media sites, texting, browsing, downloading or streaming music, posting pictures, online chatting, playing games, online shopping, and video chatting). The most common media activity was the high-frequency checking of social media. Of note, high-frequency engagement in each of the digital media activities was significantly, but moderately, associated with having ADHD symptoms at each six-month follow-up (OR 1.10), even after adjusting for covariates. High-frequency media use at baseline seemed to be associated with the development of ADHD symptoms.

Among the 495 students who reported no high-frequency media use at baseline, 4.6% met ADHD symptom criteria at follow-up. Among 114 students scoring 7 for high-frequency media use at baseline, 9.5% met the symptoms criteria. For the 51 students with a score of 14 for high-frequency media use at baseline, the rate was 10.5% (both comparisons were statistically significant).

This study is important in that it notes that an association between high-frequency digital media use (in current platforms and modalities) may be associated with the development of ADHD-like symptoms. A significant limitation of the study, as noted by the authors, is that ADHD-like symptoms do not establish a diagnosis of ADHD and do not assess impairment; therefore, these results must be interpreted with some caution. It does highlight that even with the current level of understanding, it might be prudent for clinicians to recommend limiting high-frequency media use for adolescent patients.

October 9, 2023

Undiagnosed ADHD May Be Undermining Diabetes Control in Adults with Type 1 Diabetes

Our recent study, published in the Journal of Clinical Medicine, aims to shed light on an under-recognized challenge faced by many adults with Type 1 diabetes (T1D): attention-deficit/hyperactivity disorder (ADHD) symptoms.

We surveyed over 2,000 adults with T1D using the Adult Self-Report Scale (ASRS) for ADHD and analyzed their medical records. Of those who responded, nearly one-third met the criteria for ADHD symptoms—far higher than the general population average. Notably, only about 15% had a formal diagnosis or were receiving treatment.

The findings are striking: individuals with higher ADHD symptom scores had significantly worse blood sugar control, as indicated by higher HbA1c levels. Those flagged as "ASRS positive" were more than twice as likely to have poor glycemic control (HbA1c ≥ 8.0%). They also reported higher levels of depressive symptoms.

As expected, ADHD symptoms decreased with age but remained more common than in the general public. No strong links were found between ADHD symptoms and other cardiometabolic issues.

This study highlights a previously overlooked yet highly significant factor in diabetes management. ADHD-related difficulties—such as forgetfulness, inattention, or impulsivity—can make managing a complex condition like T1D more difficult. The researchers call for more screening and awareness of ADHD in adults with diabetes, which could lead to better mental health and improved blood sugar outcomes.

Takeaway: If you or a loved one with T1D struggles with focus, organization, or consistent self-care, it may be worth exploring whether ADHD could be part of the picture. Early identification and support are crucial to managing this common comorbidity. 

July 10, 2025

Norwegian Population Study Finds ADHD Associated with Much Higher Odds of Contact with Child Welfare Services

Background:

This nationwide population study by a Norwegian team aimed to evaluate the relationship between ADHD and various types of child welfare services contacts over a long-term period of up to 18 years among children and adolescents aged 5 to 18 years diagnosed with ADHD, in comparison to the general population within the same age group. 

Norway has a single-payer national health insurance system that fully covers virtually the entirety of its population. In combination with a system of national population and health registers, this facilitates nationwide population studies, overcoming the limitations of relying on population sampling. 

Study:

The study population included all 8,051 children and adolescents aged 5 to 18 who were diagnosed with ADHD for the first time in the Norwegian Patient Registry between 2009 and 2011. 

The study also included a comparison sample of 75,184 children and adolescents aged 5–18 with no child welfare services contact during 2009–2011. 

The interventions delivered by child welfare services in Norway are largely divided into two primary categories: supportive intervention and out-of-home placement. 

Supportive interventions include improving parenting skills, promoting child development, providing supervision and control, facilitating cooperation with other services, assessments and treatments by other institutions, and offering housing support. 

Norway uses foster homes or child welfare institutions as a last resort. When supportive interventions fail to meet the child’s needs, the child welfare services can temporarily place the child in these facilities. If parents disagree, the county social welfare board decides based on a municipal request. 

The team adjusted for potential confounders: sex, age, parental socioeconomic status (father’s and mother’s education and income level), and marital status. 

Results:

With these adjustments, children and adolescents diagnosed with ADHD were over six times more likely to have any contact with child welfare services than their general population peers. This was equally true for males and females.  

Children and adolescents diagnosed with ADHD were also over six times more likely to receive supportive interventions from child welfare services. Again, there were no differences between males and females. 

Finally, children and adolescents diagnosed with ADHD were roughly seven times more likely to have an out-of-home placement than their general population peers. For males this rose to eight times more likely. 

Conclusion:

The team concluded, “This population-based study provides robust evidence of a higher rate and strong association between ADHD and contact with CWS [Child Welfare Service] compared to the general population in Norway.” 

July 8, 2025

Swedish nationwide population study identifies top predictors of ADHD diagnoses among preschoolers

Most preschool-aged children diagnosed with ADHD also exhibit comorbid mental or developmental conditions. Long-term studies following these children into adulthood have demonstrated that higher severity of ADHD symptoms in early childhood is associated with a more persistent course of ADHD. 

The Study: 

Sweden has a single-payer national health insurance system that covers virtually all residents, facilitating nationwide population studies. An international study team (US, Brazil, Sweden) searched national registers for predictors of ADHD diagnoses among all 631,695 surviving and non-emigrating preschoolers born from 2001 through 2007.  

Preschool ADHD was defined by diagnosis or prescription of ADHD medications issued to toddlers aged three through five years old.  

Predictors were conditions diagnosed prior to the ADHD diagnosis. 

A total of 1,686 (2.7%) preschoolers were diagnosed with ADHD, with the mean age at diagnosis being 4.6 years. 

The Numbers:

Adjusting for sex and birth year, the team reported the following predictors, in order of magnitude: 

  • Previous diagnosis of autism spectrum disorder increased subsequent likelihood of ADHD diagnosis twentyfold. 
  • Previous diagnosis of intellectual disability increased subsequent likelihood of ADHD diagnosis fifteenfold. 
  • Previous diagnosis of speech/language developmental disorders and learning disorders, as well as motor and tic disorders, increased subsequent likelihood of ADHD diagnosis thirteen-fold. 
  • Previous diagnosis of sleep disorders increased subsequent likelihood of ADHD diagnosis fivefold. 
  • Previous diagnosis of feeding and eating disorders increased subsequent likelihood of ADHD diagnosis almost fourfold. 
  • Previous diagnosis of gastroesophageal reflux disease (GERD) increased subsequent likelihood of ADHD diagnosis 3.5-fold. 
  • Previous diagnosis of asthma increased subsequent likelihood of ADHD diagnosis 2.4-fold. 
  • Previous diagnosis of allergic rhinitis increased subsequent likelihood of ADHD diagnosis by 70%. 
  • Previous diagnosis of atopic dermatitis or unintentional injuries increased subsequent likelihood of ADHD diagnosis by 50%. 

The Conclusion: 

This large population study underscores that many conditions present in early childhood can help predict an ADHD diagnosis in preschoolers. Recognizing these risk factors early may aid in identifying and addressing ADHD sooner, hopefully improving outcomes for children as they grow

July 2, 2025