November 16, 2023

How Serious is ADHD?

The US Center for Disease Control's (CDC)review of ADHD starts with the statement: "Attention-deficit/hyperactivity disorder (ADHD) is a serious public health problem affecting many children and adults" (http://www.cdc.gov/ncbddd/adhd/research.html). My colleagues and I recently reviewed the ADHD literature. That let us describe ADHD as "... a seriously impairing, often persistent neurobiological disorder of high prevalence..." (Faraone et al., 2015). The figure 1, which comes from that paper, provides an overview of the lifetime trajectory of ADHD-associated morbidity.

Especially compelling data about ADHD and injuries comes from a recent paper, in Lancet Psychiatry, which used the Danish national registers to follow a cohort of 710,120 children (Dalsgaard et al., 2015a).   Compared with children not having ADHD, those with ADHD were 30% more likely to sustain injuries than other children.  Pharmacotherapy for ADHD reduced the risk for injuries by 32% from 5 to 10 years of age. Pharmacotherapy for ADHD reduced emergency room visits by 28.2% at age 10and 45.7% at age 12.    

These results are shown in Figure 2, taken from the publication.

Especially compelling data about ADHD and injuries comes from a recent paper, in Lancet Psychiatry, which used the Danish national registers to follow a cohort of 710,120 children (Dalsgaard et al., 2015a).   Compared with children not having ADHD, those with ADHD were 30% more likely to sustain injuries than other children.  Pharmacotherapy for ADHD reduced the risk for injuries by 32% from 5 to 10 years of age. Pharmacotherapy for ADHD reduced emergency room visits by 28.2%at age 10and 45.7% at age 12.    

These results are shown in Figure2, taken from the publication.  The Figure compares the prevalence of injuries among three groups.  ADHD children treated with medication, ADHD children not treated with medication, and children without ADHD.  The Figure shows how ADHD risk for injuries occurs for all age groups. It also shows how the risk for injuries drops with treatment so that by age 12, the prevalence of injuries among treated ADHD children is the same as the prevalence of injuries for children without ADHD.

Documented examples of ADHD-associated injuries which impact day-to-day functioning include severe burns (Fritz and Butz, 2007), dental injuries (Sabuncuoglu, 2007), penetrating eye injuries (Bayar et al., 2015), the hospital treated injuries (Hurtig et al., 2013), and head injuries (DiScala et al., 1998).  In one study (DiScala et al., 1998), when compared to other children admitted to the hospital for injuries, ADHD children were more likely to sustain injuries in multiple body regions (57.1% vs 43%), sustain head injuries (53% vs 41%), and to be severely injured as measured by the Injury Severity Score (12.5% vs5.4%) and the Glasgow Coma Scale (7.5% vs 3.4%).

Injuries are a substantial cause of ADHD-associated premature death.  This assertion comes from the work of Dalsgaard et al. (2015b)based on the same Danish registry discussed above.   In this second study, ADHD was associated with an increased risk for premature death and 53% of those deaths were due to injuries.  They reported the risk for premature death in three age groups: 1-5, 6-17, and >17.  For all three age groups, they found a greater risk for death in the ADHD group. For ages 6 to 17 and greater than 17. The ADHD-associated risk for mortality remained significant after excluding individuals with antisocial or substance use disorders.

There are currently no data about the effect of ADHD treatment on ADHD-associated premature death.  We do, however, know from the data reviewed above that ADHD treatment reduces injuries and that half the deaths in the ADHD group were due to injuries.  From this, we infer that ADHD treatments could reduce the risk of ADHD-associated premature death.

Two other ADHD-associated mobilities, obesity and cigarette smoking, have clear medical consequences.  In a meta-analysis of 42 cross-sectional studies comprising 48,161 people with ADHD and 679,975 controls, my colleagues and I reported that the pooled prevalence of obesity was increased by about 40% in ADHD children compared with non-ADHD children and by about 70% in ADHD adults compared with non-ADHD adults(Cortese et al.,2015). The association between ADHD and obesity was significant for ADHD medication-naïve subjects but not for those medicated for ADHD, which suggests that medication reduces the risk for obesity.  

Likewise, a meta-analysis of 27 longitudinal studies assessed the risk for several addictive disorders with sample sizes ranging from 4142 to 4175 for ADHD and 6835 to 6880 for non-ADHD controls (Lee et al., 2011).  Children with ADHD were at higher risk for disorders of abuse or dependence on nicotine, alcohol, marijuana, cocaine, and other unspecified substances.  Another meta-analysis (42 studies totaling, 2360 participants) showed that medications for ADHD reduced the ADHD-associated risk for smoking (Schoenfelder et al., 2014).   The authors concluded that, for ADHD patients, "Consistent stimulant treatment for ADHD may reduce the risk of smoking". This finding is especially notable given that, for ADHD youth, cigarette smoking is a gateway drug to more serious addictions (Biederman et al., 2006).

 Yes, ADHD is a serious disorder.  Although most ADHD people will be spared the worst of these outcomes, they must be considered by parents and patients when weighing the pros and cons of treatment options.

Bayar, H., Coskun, E., Oner, V., Gokcen,C., Aksoy, U., Okumus, S. & Erbagci, I. (2015). Association between penetrating eye injuries and attention deficit hyperactivity disorder in children.Br J Ophthalmol99, 1109-11.
Biederman, J., Monuteaux, M., Mick, E., Wilens, T., Fontanella, J.,Poetzl, K. M., Kirk, T., Masse, J. & Faraone, S. V.
(2006). Is cigarette smoking a gateway drug to subsequent alcohol and illicit drug use disorders? A controlled study of youths with and without ADHD. Biol Psychiatry59, 258-64.
Cortese, S., Moreira-Maia, C. R., St Fleur, D., Morcillo-Penalver, C.,Rohde, L. A. & Faraone, S. V.
(2015). Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis. Am J Psychiatry, appiajp201515020266.
Dalsgaard, S., Leckman, J. F., Mortensen, P. B., Nielsen, H. S. &Simonsen, M.
(2015a). Effect of drugs on the risk of injuries in children with attention deficit hyperactivity disorder: a prospective cohort study. Lancet Psychiatry2, 702-9.
Dalsgaard, S., Ostergaard, S. D., Leckman, J. F., Mortensen, P. B.& Pedersen, M. G.
(2015b). Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohortstudy. Lancet385, 2190-6.
DiScala, C., Lescohier, I., Barthel, M. & Li, G.
(1998).Injuries to children with attention deficit hyperactivity disorder. Pediatrics102, 1415-21.
Faraone, S. V., Asherson, P., Banaschewski, T., Biederman, J.,Buitelaar, J. K., Ramos-Quiroga, J. A., Rohde, L. A., Sonuga-Barke, E. J. S.,Tannock, R. & Franke, B.
(2015). Attention deficit hyperactivitydisorder. In Nature Reviews: DiseasePrimers.
Fritz, K. M. & Butz, C.
(2007). Attention Deficit/Hyperactivity Disorder and pediatric burn injury: important considerations regarding premorbid risk. Curr Opin Pediatr19, 565-9.
Hurtig, T., Ebeling, H., Jokelainen, J., Koivumaa-Honkanen, H. &Taanila, A.
(2013). The Association Between Hospital-Treated Injuries and ADHD Symptoms in Childhood and Adolescence: A Follow-Up Study in the Northern Finland Birth Cohort 1986. J Atten Disord.
Lee, S. S., Humphreys, K. L., Flory, K., Liu, R. & Glass, K.
(2011).Prospective association of childhood attention-deficit/hyperactivity disorder(ADHD) and substance use and abuse/dependence: a meta-analytic review. Clin Psychol Rev31, 328-41.
Sabuncuoglu, O.
(2007). Traumatic dental injuries and attention-deficit/hyperactivity disorder: is there a link? Dent Traumatol23,137-42.
Schoenfelder, E. N., Faraone, S. V. & Kollins, S. H.
(2014).Stimulant treatment of ADHD and cigarette smoking: a meta-analysis. Pediatrics133, 1070-1080.

Related posts

No items found.

Taiwan Nationwide Population Study Concludes Dopaminergic ADHD Medications Reduce Risk of Myopia

The Background:

Myopia is a growing global health concern linked to conditions like macular degeneration, glaucoma, and retinal detachment. Its prevalence has surged in recent decades; by 2050, an estimated 5 billion people will have myopia. The increase is especially marked in Asia – a survey in Taiwan reports that 84% of students aged 15 to 18 are myopic, with 24% severely affected. 

Dopamine is an important neurotransmitter in the retina, involved in eye development, visual signaling, and refractive changes. The dopamine hypothesis, suggesting that retinal dopamine release helps prevent myopia, has emerged as a leading theory of myopia control. 

Most studies show ADHD is highly heritable, often involving dopamine system genes. ADHD is strongly associated with dopaminergic abnormalities, especially in dopamine transporter function and release dynamics. 

Medications for ADHD, like methylphenidate, atomoxetine, and clonidine, help regulate dopamine to reduce symptoms.  

The Study:

Given dopamine’s critical involvement in both ADHD and myopia, a Taiwanese research team hypothesized that medications for ADHD that influence dopaminergic pathways may have a significant effect on myopia risk.  

To evaluate this hypothesis, the team conducted a nationwide cohort study using data from Taiwan’s National Health Insurance (NHI) program, which covers 99% of the nation’s 23 million residents and provides access to comprehensive eye care and screenings. Taiwan requires visual acuity screenings beginning at age four, with annual examinations for school-aged children to promote the early detection of visual anomalies such as myopia.  

Furthermore, ADHD medication and diagnosis are tracked through compulsory diagnostic codes. This permits an accurate assessment of the effects of dopaminergic medications on myopia risk. 

Propensity score allocation using a multivariable logistic regression model was applied to reduce bias from confounding influences, pairing cohorts based on similar scores. 

The Results: 

Comparing 133,945 individuals with ADHD with an equal number without ADHD, untreated ADHD was associated with a 22% greater risk of myopia.  

However, after adjusting for covariates (gender, age, insured premium, comorbidities, location, and urbanization level), the ADHD cohort receiving medication treatment showed a 39% decreased risk of myopia relative to the untreated ADHD cohort. 

Narrowing this further to the ADHD cohort receiving dopaminergic medications reduced the risk of myopia by more than half (52%) relative to the untreated ADHD cohort.  

Treatment with two dopaminergic medications reduced the risk by well over two-thirds (72%) relative to the untreated ADHD cohort. 

There were no significant differences between methylphenidate, atomoxetine, and clonidine. Each reduced risk by about 50%. 

The team did not directly compare the ADHD cohort receiving dopaminergic medications with the non-ADHD cohort. But if there were 122 cases of myopia in the ADHD cohort for every 100 cases in the non-ADHD cohort, and dopaminergic medications halved the cases in the ADHD cohort to about 60, that would represent a roughly 40% reduction in myopia risk relative to the non-ADHD cohort. 

The team concluded, “our research indicates that pharmacologically treated ADHD children have a reduced risk of myopia. Conversely, untreated ADHD children are at a heightened risk relative to those without ADHD. Moreover, the cumulative effects of ADHD medications were found to notably decrease myopia incidence, emphasizing the protective influence of dopaminergic modulation in these interventions.” 

The Take-Away:

Children with untreated ADHD are more likely to develop myopia, but those receiving dopaminergic medications had a substantially lower risk. The findings suggest that ADHD medications may help protect against myopia by boosting dopamine signaling. More research is needed before firmly drawing this conclusion, but this research could open the door to new approaches for preventing myopia in at-risk children.

December 8, 2025

Two New Meta-analyses Point to Benefits of Transcranial Direct Current Stimulation

Background: 

ADHD treatment includes medication, behavioral therapy, dietary changes, and special education. Stimulants are usually the first choice but may cause side effects like appetite loss and stomach discomfort, leading some to stop using them. Cognitive behavioral therapy (CBT) is effective but not always sufficient on its own. Research is increasingly exploring non-drug options, such as transcranial direct current stimulation (tDCS), which may boost medication effectiveness and improve results. 

What is tDCS?

tDCS delivers a weak electric current (1.0–2.0 mA) via scalp electrodes to modulate brain activity, with current flowing from anode to cathode. Anodal stimulation increases neuronal activity, while cathodal stimulation generally inhibits it, though effects vary by region and neural circuitry. The impact of tDCS depends on factors such as current intensity, duration, and electrode shape. It targets cortical areas, often stimulating the dorsolateral prefrontal cortex for ADHD due to its role in cognitive control. Stimulation of the inferior frontal gyrus has also been shown to improve response inhibition, making it another target for ADHD therapy. 

There is an ongoing debate about how effective tDCS is for individuals with ADHD. One study found that applying tDCS to the left dorsolateral prefrontal cortex can help reduce impulsivity symptoms in ADHD, whereas another study reported that several sessions of anodic tDCS did not lead to improvements in ADHD symptoms or cognitive abilities.  

New Research:

Two recent meta-analyses have searched for a resolution to these conflicting findings. Both included only randomized controlled trials (RCTs) using either sham stimulation or a waitlist for controls. 

Each team included seven studies in their respective meta-analyses, three of which appeared in both. 

Both Wang et al. (three RCTs totaling 97 participants) and Wen et al. (three RCTs combining 121 participants) reported very large effect size reductions in inattention symptoms from tDCS versus controls. There was only one RCT overlap between them. Wang et al. had moderate to high  variation (heterogeneity) in individual study outcomes, whereas Wen et al. had virtually none. There was no indication of publication bias. 

Whereas Wen et al.’s same three RCTs found no significant reduction in hyperactivity/impulsivity symptoms, Wang et al. combined five RCTs with 221 total participants and reported a medium effect size reduction in impulsivity symptoms. This time, there was an overlap of two RCTs between the studies. Wen et al. had no heterogeneity, while Wang et al. had moderate heterogeneity. Neither showed signs of publication bias.  

Turning to performance-based tasks, Wang et al. reported a medium effect size improvement in attentional performance from tDCS over controls (three RCTs totaling 136 participants), but no improvement in inhibitory control (five RCTs combining 234 persons). 

Wang et al. found no significant difference in adverse events (four RCTs combining 161 participants) between tDCS and controls, with no heterogeneity. Wen et al. found no significant difference in dropout rates (4 RCTs totaling 143 individuals), again with no heterogeneity.  

Wang et al. concluded, “tDCS may improve impulsive symptoms and inattentive symptoms among ADHD patients without increasing adverse effects, which is critical for clinical practice, especially when considering noninvasive brain stimulation, where patient safety is a key concern.” 

Wen et al. further concluded, “Our study supported the use of tDCS for improving the self-reported symptoms of inattention and objective attentional performance in adults diagnosed with ADHD. However, the limited number of available trials hindered a robust investigation into the parameters required for establishing a standard protocol, such as the optimal location of electrode placement and treatment frequency in this setting. Further large-scale double-blind sham-controlled clinical trials that include assessments of self-reported symptoms and performance-based tasks both immediately after interventions and during follow-up periods, as well as comparisons of the efficacy of tDCS targeting different brain locations, are warranted to address these issues.” 

The Take-Away: 

Previous studies have shown mixed results on the benefits of this therapy on ADHD. These new findings suggest that tDCS may hold some real promise for adults with ADHD. While the technique didn’t meaningfully shift hyperactivity or impulsivity, it was well-tolerated and showed benefit, especially in self-reported symptoms. However, with only a handful of trials to draw from, it would be a mistake to suggest tDCS as a standard treatment protocol. Larger, well-designed studies are the next essential step to clarify where, how, and how often tDCS works best.

Meta-analysis Reports Executive Function Gains from Exercise Interventions for ADHD

Background:

The development of ADHD is strongly associated with functional impairments in the prefrontal cortex, particularly the dorsolateral prefrontal cortex, which plays a key role in maintaining attention and controlling impulses. Moreover, imbalances in neurotransmitters like dopamine and norepinephrine are widely regarded as major neurobiological factors contributing to ADHD. 

Executive functions are a group of higher-order cognitive skills that guide thoughts and actions toward goals. “Executive function” refers to three main components: inhibitory control, working memory, and cognitive flexibility. Inhibitory control helps curb impulsive actions to stay on track. Working memory allows temporary storage and manipulation of information for complex tasks. Cognitive flexibility enables switching attention and strategies in varied or demanding situations. 

Research shows that about 89% of children with ADHD have specific executive function impairments. These difficulties in attention, self-control, and working memory often result in academic and social issues. Without timely intervention, these issues can lead to emotional disorders like depression, anxiety, and irritability, further affecting both physical health and social development. 

Currently, primary treatments for executive function deficits in school-aged children with ADHD include medication and behavioral or psychological therapies, such as Cognitive Behavioral Therapy (CBT). While stimulant medications do improve executive function, not all patients are able to tolerate these medications. Behavioral interventions like neurofeedback provide customized care but show variable effectiveness and require specialized resources, making them hard to sustain. Safer, more practical, and long-lasting treatment options are urgently needed. 

Exercise interventions are increasingly recognized as a safe, effective way to improve executive function in children with ADHD. However, systematic studies on school-aged children remain limited.  

Moreover, there are two main scoring methods for assessing executive function: positive scoring (higher values mean better performance, such as accuracy) and reverse scoring (lower values mean better performance, such as reaction time). These different methods can affect how results are interpreted and compared across studies. This meta-analysis explored how different measurement and scoring methods might influence results, addressing important gaps in the research. 

The Study:

Only randomized controlled trials (RCTs) involving school-aged children (6–13 years old) diagnosed with ADHD by DSM-IV, DSM-5, ICD-10, ICD-11, or the SNAP-IV scale were included. Studies were excluded if the experimental group received non-exercise interventions or exercise combined with other interventions. 

Cognitive Flexibility 

Using positive scoring, exercise interventions were associated with a narrowly non-significant small effect size improvement relative to controls (eight RCTs, 268 children). Using reverse scoring, however, they were associated with a medium effect size improvement (eleven RCTs, 452 children). Variation (heterogeneity) in individual RCT outcomes was moderate, with no sign of publication bias in both instances. 

Inhibitory Control 

Using positive scoring, exercise interventions were associated with a medium effect size improvement relative to controls (ten RCTs, 421 children). Using reverse scoring, there was an association with a medium effect size improvement (eight RCTs, 265 children). Heterogeneity was moderate with no sign of publication bias in either case. 

Working Memory 

Using positive scoring, exercise interventions were associated with a medium effect size improvement relative to controls (six RCTs, 321 children). Using reverse scoring, the exercise was associated with a medium effect size improvement (five RCTs, 143 children). Heterogeneity was low with no indication of publication bias in both instances. 

Conclusion:

The team concluded, “Exercise interventions can effectively improve inhibitory control and working memory in school-aged children with ADHD, regardless of whether positive or reverse scoring methods are applied. However, the effects of exercise on cognitive flexibility appear to be limited, with significant improvements observed only under reverse scoring. Moreover, the effects of exercise interventions on inhibitory control, working memory, and cognitive flexibility vary across different measurement paradigms and scoring methods, indicating the importance of considering these methodological differences when interpreting results.” 

Although this work is intriguing, it does not show that exercise significantly improves the symptoms of ADHD in children. This means that exercise, although beneficial for many reasons, should not be viewed as a replacement for evidence-based treatments for the disorder.

December 3, 2025