April 7, 2021

Adult Onset ADHD: Does it Exist? Is it Distinct from Youth Onset ADHD?

There is a growing interest (and controversy) in 'adult-onset ADHD. No current diagnostic system allows for the diagnosis of ADHD in adulthood, yet clinicians sometimes face adults who meet all criteria for ADHD, except for age at onset. Although many of these clinically referred adult-onset cases may reflect poor recall, several recent longitudinal population studies have claimed to detect cases of adult-onset ADHD that showed no signs of ADHD as a youth (Agnew-Blais, Polanczyk et al. 2016, Caye, Rocha, et al. 2016). They conclude, not only that ADHD can onset in adulthood, but that childhood-onset and adult-onset ADHD may be distinct syndromes(Moffitt, Houts, et al. 2015)

In each study, the prevalence of adult-onset ADHD was much larger than the prevalence of childhood-onset adult ADHD). These estimates should be viewed with caution.  The adults in two of the studies were 18-19 years old.  That is too small a slice of adulthood to draw firm conclusions. As discussed elsewhere (Faraone and Biederman 2016), the claims for adult-onset ADHD are all based on population as opposed to clinical studies.
Population studies are plagued by the "false positive paradox", which states that, even when false positive rates are low, many or even most diagnoses in a population study can be false.  

Another problem is that the false positive rate is sensitive to the method of diagnosis. The child diagnoses in the studies claiming the existence of adult-onset ADHDused reports from parents and/or teachers but the adult diagnoses were based on self-report. Self-reports of ADHD in adults are less reliable than informant reports, which raises concerns about measurement error.   Another longitudinal study found that current symptoms of ADHD were under-reported by adults who had had ADHD in childhood and over-reported by adults who did not have ADHD in childhood(Sibley, Pelham, et al. 2012).   These issues strongly suggest that the studies claiming the existence of adult-onset ADHD underestimated the prevalence of persistent ADHD and overestimated the prevalence of adult-onset ADHD.  Thus, we cannot yet accept the conclusion that most adults referred to clinicians with ADHD symptoms will not have a history of ADHD in youth.

The new papers conclude that child and adult ADHD are "distinct syndromes", "that adult ADHD is more complex than a straightforward continuation of the childhood disorder" and that adult ADHD is "not a neurodevelopmental disorder". These conclusions are provocative, suggesting a paradigm shift in how we view adulthood and childhood ADHD.   Yet they seem premature.  In these studies, people were categorized as adult-onset ADHD if full-threshold add had not been diagnosed in childhood.  Yet, in all of these population studies, there was substantial evidence that the adult-onset cases were not neurotypical in adulthood (Faraone and Biederman 2016).  Notably, in a study of referred cases, one-third of late adolescent and adult-onset cases had childhood histories of ODD, CD, and school failure(Chandra, Biederman, et al. 2016).   Thus, many of the "adult onsets" of ADHD appear to have had neurodevelopmental roots. 

Looking through a more parsimonious lens, Faraone and Biederman(2016)proposed that the putative cases of adult-onset ADHD reflect the existence of subthreshold childhood ADHD that emerges with full threshold diagnostic criteria in adulthood.   Other work shows that subthreshold ADHD in childhood predicts onsets of full-threshold ADHD in adolescence(Lecendreux, Konofal, et al. 2015).   Why is onset delayed in subthreshold cases? One possibility is that intellectual and social supports help subthreshold ADHD youth compensate in early life, with decompensation occurring when supports are removed in adulthood or the challenges of life increase.  A related possibility is that the subthreshold cases are at the lower end of a dimensional liability spectrum that indexes risk for onset of ADHD symptoms and impairments.  This is consistent with the idea that ADHD is an extreme form of a dimensional trait, which is supported by twin and molecular genetic studies(Larsson, Anckarsater, et al. 2012, Lee, Ripke, et al. 2013).  These data suggest that disorders emerge when risk factors accumulate over time to exceed a threshold.  Those with lower levels of risk at birth will take longer to accumulate sufficient risk factors and longer to onset.

In conclusion, it is premature to accept the idea that there exists an adult-onset form of ADHD that does not have its roots in neurodevelopment and is not expressed in childhood.   It is, however, the right time to carefully study apparent cases of adult-onset ADHD to test the idea that they are late manifestations of a subthreshold childhood condition.

Agnew-Blais, J. C., G.V. Polanczyk, A. Danese, J. Wertz, T. E. Moffitt and L. Arseneault (2016)."Persistence, Remission and Emergence of ADHD in Young Adulthood:Resultsfrom a Longitudinal, Prospective Population-Based Cohort." JAMA.Caye, A., T. B.-M. Rocha, L. Luciana Anselmi, J. Murray, A. M.B. Menezes, F. C. Barros, H. Gonçalves, F. Wehrmeister, C. M. Jensen, H.-C.Steinhausen, J. M. Swanson, C. Kieling and L. A. Rohde (2016). "ADHD doesnot always begin in childhood: E 1 vidence from a large birth cohort." JAMA.
Chandra, S., J. Biederman and S. V. Faraone (2016)."Assessing the Validity of  the Ageat Onset Criterion for Diagnosing ADHD in DSM-5." J Atten Disord.
Faraone, S. V. and J. Biederman (2016). "CanAttention-Deficit/Hyperactivity Disorder Onset Occur in Adulthood?" JAMAPsychiatry.
Larsson, H., H. Anckarsater, M. Rastam, Z. Chang and P.Lichtenstein (2012). "Childhood attention-deficit hyperactivity disorderas an extreme of a continuous trait: a quantitative genetic study of 8,500 twinpairs." J Child Psychol Psychiatry53(1): 73-80.
Lecendreux, M., E. Konofal, S. Cortese and S. V. Faraone(2015). "A 4-year follow-up of attention-deficit/hyperactivity disorder ina population sample." J Clin Psychiatry76(6): 712-719.
Lee, S. H., S. Ripke, B. M. Neale, S. V. Faraone, S. M.Purcell, R. H. Perlis, B. J. Mowry, A. Thapar, M. E. Goddard, J. S. Witte, D.Absher, I. Agartz, H. Akil, F. Amin, O. A. Andreassen, A. Anjorin, R. Anney, V.Anttila, D. E. Arking, P. Asherson, M. H. Azevedo, L. Backlund, J. A. Badner,A. J. Bailey, T. Banaschewski, J. D. Barchas, M. R. Barnes, T. B. Barrett, N.Bass, A. Battaglia, M. Bauer, M. Bayes, F. Bellivier, S. E. Bergen, W.Berrettini, C. Betancur, T. Bettecken, J. Biederman, E. B. Binder, D. W. Black,D. H. Blackwood, C. S. Bloss, M. Boehnke, D. I. Boomsma, G. Breen, R. Breuer,R. Bruggeman, P. Cormican, N. G. Buccola, J. K. Buitelaar, W. E. Bunney, J. D.Buxbaum, W. F. Byerley, E. M. Byrne, S. Caesar, W. Cahn, R. M. Cantor, M.Casas, A. Chakravarti, K. Chambert, K. Choudhury, S. Cichon, C. R. Cloninger,D. A. Collier, E. H. Cook, H. Coon, B. Cormand, A. Corvin, W. H. Coryell, D. W.Craig, I. W. Craig, J. Crosbie, M. L. Cuccaro, D. Curtis, D. Czamara, S. Datta,G. Dawson, R. Day, E. J. De Geus, F. Degenhardt, S. Djurovic, G. J. Donohoe, A.E. Doyle, J. Duan, F. Dudbridge, E. Duketis, R. P. Ebstein, H. J. Edenberg, J.Elia, S. Ennis, B. Etain, A. Fanous, A. E. Farmer, I. N. Ferrier, M.Flickinger, E. Fombonne, T. Foroud, J. Frank, B. Franke, C. Fraser, R.Freedman, N. B. Freimer, C. M. Freitag, M. Friedl, L. Frisen, L. Gallagher, P.V. Gejman, L. Georgieva, E. S. Gershon, D. H. Geschwind, I. Giegling, M. Gill,S. D. Gordon, K. Gordon-Smith, E. K. Green, T. A. Greenwood, D. E. Grice, M.Gross, D. Grozeva, W. Guan, H. Gurling, L. De Haan, J. L. Haines, H. Hakonarson,J. Hallmayer, S. P. Hamilton, M. L. Hamshere, T. F. Hansen, A. M. Hartmann, M.Hautzinger, A. C. Heath, A. K. Henders, S. Herms, I. B. Hickie, M. Hipolito, S.Hoefels, P. A. Holmans, F. Holsboer, W. J. Hoogendijk, J. J. Hottenga, C. M.Hultman, V. Hus, A. Ingason, M. Ising, S. Jamain, E. G. Jones, I. Jones, L.Jones, J. Y. Tzeng, A. K. Kahler, R. S. Kahn, R. Kandaswamy, M. C. Keller, J.L. Kennedy, E. Kenny, L. Kent, Y. Kim, G. K. Kirov, S. M. Klauck, L. Klei, J.A. Knowles, M. A. Kohli, D. L. Koller, B. Konte, A. Korszun, L. Krabbendam, R.Krasucki, J. Kuntsi, P. Kwan, M. Landen, N. Langstrom, M. Lathrop, J. Lawrence,W. B. Lawson, M. Leboyer, D. H. Ledbetter, P. H. Lee, T. Lencz, K. P. Lesch, D.F. Levinson, C. M. Lewis, J. Li, P. Lichtenstein, J. A. Lieberman, D. Y. Lin,D. H. Linszen, C. Liu, F. W. Lohoff, S. K. Loo, C. Lord, J. K. Lowe, S. Lucae,D. J. MacIntyre, P. A. Madden, E. Maestrini, P. K. Magnusson, P. B. Mahon, W.Maier, A. K. Malhotra, S. M. Mane, C. L. Martin, N. G. Martin, M. Mattheisen,K. Matthews, M. Mattingsdal, S. A. McCarroll, K. A. McGhee, J. J. McGough, P.J. McGrath, P. McGuffin, M. G. McInnis, A. McIntosh, R. McKinney, A. W. McLean,F. J. McMahon, W. M. McMahon, A. McQuillin, H. Medeiros, S. E. Medland, S.Meier, I. Melle, F. Meng, J. Meyer, C. M. Middeldorp, L. Middleton, V.Milanova, A. Miranda, A. P. Monaco, G. W. Montgomery, J. L. Moran, D.Moreno-De-Luca, G. Morken, D. W. Morris, E. M. Morrow, V. Moskvina, P. Muglia,T. W. Muhleisen, W. J. Muir, B. Muller-Myhsok, M. Murtha, R. M. Myers, I.Myin-Germeys, M. C. Neale, S. F. Nelson, C. M. Nievergelt, I. Nikolov, V.Nimgaonkar, W. A. Nolen, M. M. Nothen, J. I. Nurnberger, E. A. Nwulia, D. R.Nyholt, C. O'Dushlaine, R. D. Oades, A. Olincy, G. Oliveira, L. Olsen, R. A.Ophoff, U. Osby, M. J. Owen, A. Palotie, J. R. Parr, A. D. Paterson, C. N.Pato, M. T. Pato, B. W. Penninx, M. L. Pergadia, M. A. Pericak-Vance, B. S.Pickard, J. Pimm, J. Piven, D. Posthuma, J. B. Potash, F. Poustka, P. Propping,V. Puri, D. J. Quested, E. M. Quinn, J. A. Ramos-Quiroga, H. B. Rasmussen, S.Raychaudhuri, K. Rehnstrom, A. Reif, M. Ribases, J. P. Rice, M. Rietschel, K.Roeder, H. Roeyers, L. Rossin, A. Rothenberger, G. Rouleau, D. Ruderfer, D.Rujescu, A. R. Sanders, S. J. Sanders, S. L. Santangelo, J. A. Sergeant, R.Schachar, M. Schalling, A. F. Schatzberg, W. A. Scheftner, G. D. Schellenberg,S. W. Scherer, N. J. Schork, T. G. Schulze, J. Schumacher, M. Schwarz, E.Scolnick, L. J. Scott, J. Shi, P. D. Shilling, S. I. Shyn, J. M. Silverman, S.L. Slager, S. L. Smalley, J. H. Smit, E. N. Smith, E. J. Sonuga-Barke, D. StClair, M. State, M. Steffens, H. C. Steinhausen, J. S. Strauss, J. Strohmaier,T. S. Stroup, J. S. Sutcliffe, P. Szatmari, S. Szelinger, S. Thirumalai, R. C.Thompson, A. A. Todorov, F. Tozzi, J. Treutlein, M. Uhr, E. J. van den Oord, G.Van Grootheest, J. Van Os, A. M. Vicente, V. J. Vieland, J. B. Vincent, P. M.Visscher, C. A. Walsh, T. H. Wassink, S. J. Watson, M. M. Weissman, T. Werge,T. F. Wienker, E. M. Wijsman, G. Willemsen, N. Williams, A. J. Willsey, S. H.Witt, W. Xu, A. H. Young, T. W. Yu, S. Zammit, P. P. Zandi, P. Zhang, F. G.Zitman, S. Zollner, B. Devlin, J. R. Kelsoe, P. Sklar, M. J. Daly, M. C.O'Donovan, N. Craddock, P. F. Sullivan, J. W. Smoller, K. S. Kendler and N. R.Wray (2013). "Genetic relationship between five psychiatric disordersestimated from genome-wide SNPs." Nat Genet45(9): 984-994.
Moffitt, T. E., R. Houts, P. Asherson, D. W. Belsky, D. L.Corcoran, M. Hammerle, H. Harrington, S. Hogan, M. H. Meier, G. V. Polanczyk,R. Poulton, S. Ramrakha, K. Sugden, B. Williams, L. A. Rohde and A. Caspi(2015). "Is Adult ADHD a Childhood-Onset Neurodevelopmental Disorder?Evidence From a Four-Decade Longitudinal Cohort Study." Am J Psychiatry:appiajp201514101266.
Sibley, M. H., W. E. Pelham, B.S. Molina, E. M. Gnagy, J. G. Waxmonsky, D. A. Waschbusch, K. J. Derefinko, B.T. Wymbs, A. C. Garefino, D. E. Babinski and A. B. Kuriyan (2012). "Whendiagnosing ADHD in young adults emphasize informant reports, DSM items, and impairment."J Consult Clin Psychol80(6):1052-1061.

Related posts

No items found.

Taiwan Nationwide Population Study Concludes Dopaminergic ADHD Medications Reduce Risk of Myopia

The Background:

Myopia is a growing global health concern linked to conditions like macular degeneration, glaucoma, and retinal detachment. Its prevalence has surged in recent decades; by 2050, an estimated 5 billion people will have myopia. The increase is especially marked in Asia – a survey in Taiwan reports that 84% of students aged 15 to 18 are myopic, with 24% severely affected. 

Dopamine is an important neurotransmitter in the retina, involved in eye development, visual signaling, and refractive changes. The dopamine hypothesis, suggesting that retinal dopamine release helps prevent myopia, has emerged as a leading theory of myopia control. 

Most studies show ADHD is highly heritable, often involving dopamine system genes. ADHD is strongly associated with dopaminergic abnormalities, especially in dopamine transporter function and release dynamics. 

Medications for ADHD, like methylphenidate, atomoxetine, and clonidine, help regulate dopamine to reduce symptoms.  

The Study:

Given dopamine’s critical involvement in both ADHD and myopia, a Taiwanese research team hypothesized that medications for ADHD that influence dopaminergic pathways may have a significant effect on myopia risk.  

To evaluate this hypothesis, the team conducted a nationwide cohort study using data from Taiwan’s National Health Insurance (NHI) program, which covers 99% of the nation’s 23 million residents and provides access to comprehensive eye care and screenings. Taiwan requires visual acuity screenings beginning at age four, with annual examinations for school-aged children to promote the early detection of visual anomalies such as myopia.  

Furthermore, ADHD medication and diagnosis are tracked through compulsory diagnostic codes. This permits an accurate assessment of the effects of dopaminergic medications on myopia risk. 

Propensity score allocation using a multivariable logistic regression model was applied to reduce bias from confounding influences, pairing cohorts based on similar scores. 

The Results: 

Comparing 133,945 individuals with ADHD with an equal number without ADHD, untreated ADHD was associated with a 22% greater risk of myopia.  

However, after adjusting for covariates (gender, age, insured premium, comorbidities, location, and urbanization level), the ADHD cohort receiving medication treatment showed a 39% decreased risk of myopia relative to the untreated ADHD cohort. 

Narrowing this further to the ADHD cohort receiving dopaminergic medications reduced the risk of myopia by more than half (52%) relative to the untreated ADHD cohort.  

Treatment with two dopaminergic medications reduced the risk by well over two-thirds (72%) relative to the untreated ADHD cohort. 

There were no significant differences between methylphenidate, atomoxetine, and clonidine. Each reduced risk by about 50%. 

The team did not directly compare the ADHD cohort receiving dopaminergic medications with the non-ADHD cohort. But if there were 122 cases of myopia in the ADHD cohort for every 100 cases in the non-ADHD cohort, and dopaminergic medications halved the cases in the ADHD cohort to about 60, that would represent a roughly 40% reduction in myopia risk relative to the non-ADHD cohort. 

The team concluded, “our research indicates that pharmacologically treated ADHD children have a reduced risk of myopia. Conversely, untreated ADHD children are at a heightened risk relative to those without ADHD. Moreover, the cumulative effects of ADHD medications were found to notably decrease myopia incidence, emphasizing the protective influence of dopaminergic modulation in these interventions.” 

The Take-Away:

Children with untreated ADHD are more likely to develop myopia, but those receiving dopaminergic medications had a substantially lower risk. The findings suggest that ADHD medications may help protect against myopia by boosting dopamine signaling. More research is needed before firmly drawing this conclusion, but this research could open the door to new approaches for preventing myopia in at-risk children.

December 8, 2025

Two New Meta-analyses Point to Benefits of Transcranial Direct Current Stimulation

Background: 

ADHD treatment includes medication, behavioral therapy, dietary changes, and special education. Stimulants are usually the first choice but may cause side effects like appetite loss and stomach discomfort, leading some to stop using them. Cognitive behavioral therapy (CBT) is effective but not always sufficient on its own. Research is increasingly exploring non-drug options, such as transcranial direct current stimulation (tDCS), which may boost medication effectiveness and improve results. 

What is tDCS?

tDCS delivers a weak electric current (1.0–2.0 mA) via scalp electrodes to modulate brain activity, with current flowing from anode to cathode. Anodal stimulation increases neuronal activity, while cathodal stimulation generally inhibits it, though effects vary by region and neural circuitry. The impact of tDCS depends on factors such as current intensity, duration, and electrode shape. It targets cortical areas, often stimulating the dorsolateral prefrontal cortex for ADHD due to its role in cognitive control. Stimulation of the inferior frontal gyrus has also been shown to improve response inhibition, making it another target for ADHD therapy. 

There is an ongoing debate about how effective tDCS is for individuals with ADHD. One study found that applying tDCS to the left dorsolateral prefrontal cortex can help reduce impulsivity symptoms in ADHD, whereas another study reported that several sessions of anodic tDCS did not lead to improvements in ADHD symptoms or cognitive abilities.  

New Research:

Two recent meta-analyses have searched for a resolution to these conflicting findings. Both included only randomized controlled trials (RCTs) using either sham stimulation or a waitlist for controls. 

Each team included seven studies in their respective meta-analyses, three of which appeared in both. 

Both Wang et al. (three RCTs totaling 97 participants) and Wen et al. (three RCTs combining 121 participants) reported very large effect size reductions in inattention symptoms from tDCS versus controls. There was only one RCT overlap between them. Wang et al. had moderate to high  variation (heterogeneity) in individual study outcomes, whereas Wen et al. had virtually none. There was no indication of publication bias. 

Whereas Wen et al.’s same three RCTs found no significant reduction in hyperactivity/impulsivity symptoms, Wang et al. combined five RCTs with 221 total participants and reported a medium effect size reduction in impulsivity symptoms. This time, there was an overlap of two RCTs between the studies. Wen et al. had no heterogeneity, while Wang et al. had moderate heterogeneity. Neither showed signs of publication bias.  

Turning to performance-based tasks, Wang et al. reported a medium effect size improvement in attentional performance from tDCS over controls (three RCTs totaling 136 participants), but no improvement in inhibitory control (five RCTs combining 234 persons). 

Wang et al. found no significant difference in adverse events (four RCTs combining 161 participants) between tDCS and controls, with no heterogeneity. Wen et al. found no significant difference in dropout rates (4 RCTs totaling 143 individuals), again with no heterogeneity.  

Wang et al. concluded, “tDCS may improve impulsive symptoms and inattentive symptoms among ADHD patients without increasing adverse effects, which is critical for clinical practice, especially when considering noninvasive brain stimulation, where patient safety is a key concern.” 

Wen et al. further concluded, “Our study supported the use of tDCS for improving the self-reported symptoms of inattention and objective attentional performance in adults diagnosed with ADHD. However, the limited number of available trials hindered a robust investigation into the parameters required for establishing a standard protocol, such as the optimal location of electrode placement and treatment frequency in this setting. Further large-scale double-blind sham-controlled clinical trials that include assessments of self-reported symptoms and performance-based tasks both immediately after interventions and during follow-up periods, as well as comparisons of the efficacy of tDCS targeting different brain locations, are warranted to address these issues.” 

The Take-Away: 

Previous studies have shown mixed results on the benefits of this therapy on ADHD. These new findings suggest that tDCS may hold some real promise for adults with ADHD. While the technique didn’t meaningfully shift hyperactivity or impulsivity, it was well-tolerated and showed benefit, especially in self-reported symptoms. However, with only a handful of trials to draw from, it would be a mistake to suggest tDCS as a standard treatment protocol. Larger, well-designed studies are the next essential step to clarify where, how, and how often tDCS works best.

Meta-analysis Reports Executive Function Gains from Exercise Interventions for ADHD

Background:

The development of ADHD is strongly associated with functional impairments in the prefrontal cortex, particularly the dorsolateral prefrontal cortex, which plays a key role in maintaining attention and controlling impulses. Moreover, imbalances in neurotransmitters like dopamine and norepinephrine are widely regarded as major neurobiological factors contributing to ADHD. 

Executive functions are a group of higher-order cognitive skills that guide thoughts and actions toward goals. “Executive function” refers to three main components: inhibitory control, working memory, and cognitive flexibility. Inhibitory control helps curb impulsive actions to stay on track. Working memory allows temporary storage and manipulation of information for complex tasks. Cognitive flexibility enables switching attention and strategies in varied or demanding situations. 

Research shows that about 89% of children with ADHD have specific executive function impairments. These difficulties in attention, self-control, and working memory often result in academic and social issues. Without timely intervention, these issues can lead to emotional disorders like depression, anxiety, and irritability, further affecting both physical health and social development. 

Currently, primary treatments for executive function deficits in school-aged children with ADHD include medication and behavioral or psychological therapies, such as Cognitive Behavioral Therapy (CBT). While stimulant medications do improve executive function, not all patients are able to tolerate these medications. Behavioral interventions like neurofeedback provide customized care but show variable effectiveness and require specialized resources, making them hard to sustain. Safer, more practical, and long-lasting treatment options are urgently needed. 

Exercise interventions are increasingly recognized as a safe, effective way to improve executive function in children with ADHD. However, systematic studies on school-aged children remain limited.  

Moreover, there are two main scoring methods for assessing executive function: positive scoring (higher values mean better performance, such as accuracy) and reverse scoring (lower values mean better performance, such as reaction time). These different methods can affect how results are interpreted and compared across studies. This meta-analysis explored how different measurement and scoring methods might influence results, addressing important gaps in the research. 

The Study:

Only randomized controlled trials (RCTs) involving school-aged children (6–13 years old) diagnosed with ADHD by DSM-IV, DSM-5, ICD-10, ICD-11, or the SNAP-IV scale were included. Studies were excluded if the experimental group received non-exercise interventions or exercise combined with other interventions. 

Cognitive Flexibility 

Using positive scoring, exercise interventions were associated with a narrowly non-significant small effect size improvement relative to controls (eight RCTs, 268 children). Using reverse scoring, however, they were associated with a medium effect size improvement (eleven RCTs, 452 children). Variation (heterogeneity) in individual RCT outcomes was moderate, with no sign of publication bias in both instances. 

Inhibitory Control 

Using positive scoring, exercise interventions were associated with a medium effect size improvement relative to controls (ten RCTs, 421 children). Using reverse scoring, there was an association with a medium effect size improvement (eight RCTs, 265 children). Heterogeneity was moderate with no sign of publication bias in either case. 

Working Memory 

Using positive scoring, exercise interventions were associated with a medium effect size improvement relative to controls (six RCTs, 321 children). Using reverse scoring, the exercise was associated with a medium effect size improvement (five RCTs, 143 children). Heterogeneity was low with no indication of publication bias in both instances. 

Conclusion:

The team concluded, “Exercise interventions can effectively improve inhibitory control and working memory in school-aged children with ADHD, regardless of whether positive or reverse scoring methods are applied. However, the effects of exercise on cognitive flexibility appear to be limited, with significant improvements observed only under reverse scoring. Moreover, the effects of exercise interventions on inhibitory control, working memory, and cognitive flexibility vary across different measurement paradigms and scoring methods, indicating the importance of considering these methodological differences when interpreting results.” 

Although this work is intriguing, it does not show that exercise significantly improves the symptoms of ADHD in children. This means that exercise, although beneficial for many reasons, should not be viewed as a replacement for evidence-based treatments for the disorder.

December 3, 2025