July 16, 2021

What do we know about the relationship between omega-3 PUFAs and ADHD?

There has been much interest in omega-3 Polyunsaturated fatty acids (PUFAs) as treatments for ADHD. Humans are unable to synthesize the omega-3 PUFA alpha-linolenic acid (ALA)and the omega-6 PUFA linoleic acid (LA), and must therefore obtain these through food, which is why they are known as essential fatty acids.  Because cells in the brain need omega-3 PUFAs, they have been studied as a treatment for ADHD by many researchers.  Several meta-analyses are available.

A 2014 meta-analysis by Elizabeth Haw key and Joel Niggcombined nine studies involving 586 participants. It found mean blood levels of omega-3 PUFAs in persons with ADHD to be lower than in controls. The standardized mean difference (SMD) effect size was medium (SMD = .42, 95% CI = .26-.59), with less than a one in one thousand probability of such a result being obtained by chance alone. Adjusting for publication bias reduced the effect size slightly to .36 with a 95% CI of .21-.51, in the small-to-medium range. The authors then examined whether omega-3 supplementation could help alleviate ADHD symptoms. Combining 16 studies with 1,408 participants, they found improvements, but this time with a small effect size (SMD = .26, 95% CI =.15-.37), again with less than a one in a thousand probability of such a result being observed by chance. Adjusting for publication bias reduced the effect size to .16 with a 95% CI of .03-.28.  For comparison, the SMD for stimulants is about 0.9.

Another meta-analysis conducted in the same year by BasantPuri and Julian Martins combined 18 PUFA supplementation studies involving1,640 participants. They also found a small effect size for reduced ADHD symptoms (SMD = .19, 95% CI = .09-.30, p<.001). Adjusting for publication bias further reduced the effect size to a paltry and statistically insignificant level (SMD = .12, 95% CI = -.01-.25). It should be noted that while16 of the studies involved omega-3 supplementation, two involved only omega-6supplementation. Yet the results for the latter did not differ noticeably from the former. When the authors limited the analysis to the 11 studies specifically including both the omega-6GLAand the omega-3 EPA, the effect size for reducing inattention symptoms was a bit higher(SMD = .31, 95% CI = .16-.46, p<.0001). But the results were not significantly different from those for the studies without the GLA+ALA combination (.012; 95% CI: .161-.137; p=.875). Publication bias was not addressed, and the hunt for a highly specific subset with positive results may have produced a false-positive finding.  The authors conceded, "Weaknesses of this study include the following: although the pooled effect was statistically significant, only two studies showed a significant effect by themselves; the funnel plot showed evidence of publication bias; there was evidence of reporting bias; few studies were formally registered; study methodological quality was variable, and the placebo used across studies varied."

A 2016 meta-analysis by Laura Lachance et al. tried looking for differences in the ratio of omega-6 to omega-3 PUFAs, and more specifically, AA to EPA, in the blood of persons with ADHD versus normally developing persons. Pooling five studies with485 participants, it found the omega-6 to omega-3 ratio to be significantly higher in persons with ADHD, and pooling three studies with 279 participants, it likewise found the AA to EPA ratio significantly higher.

A 2017 meta-analysis by Jane Pei-Chen Chang et al. Reexamined comparative levels of omega-3 PUFAs in ADHD patients versus normally developing controls. Combining six studies with 396 participants, ADHD patients had lower levels in blood and mouth tissue, with a medium effect size (SMD =.38) that was not statistically significant (p=.14).  Omega-6 levels were indistinguishable (SMD =.03) in the two groups. AA (SMD = .18, p=.33) and EPA (SMD = .25, p=.17) levels were slightly lower, but once again statistically not significant. DHA levels were lower as well, this time with a medium effect size (SMD = .56), but at the outer margin of significance (p=.05). Only by dropping one study were the authors able to claim significance for EPA, AA, and omega-3 differences.

Chang et al. also performed a meta-analysis of supplementation studies. Combining seven studies with 534 participants, they found a small to medium reduction in ADHD symptoms with omega-3 supplementation(SMD = .38, 95% CI = .2-.56, p<.0001). Corrections for publication bias were not reported. The authors also reported large reductions in both omission errors (SMD = 1.09, 95% CI = .43-.1.75, p<.001) and commission errors (SMD =2.14, 95% CI = 1.24-3.03, p<.00001) on a neuropsychological test of attention. But the former involved only 3 studies with 214 participants, and the latter only two studies with 85 participants.

Also in 2017, Pelsser et al. published a systematic review that identified only two meta-analyses of double-blind, placebo-controlled trials of PUFA supplementation. One of those, a 2012meta-analysis by Gillies et al., found no statistically significant declines in either parent-rated ADHD symptoms (five trials, 413 participants, SMD = -.17,95% CI = -.38-.03) or teacher-rated ADHD symptoms (four trials, 324participants, SMD = .05, 95% CI = -.18-.27). The other, a 2013 meta-analysis by Sonuga-Barke et al., found only a slight and barely statistically significant reduction in symptoms (11 trials, 827 participants, SMD = .16, 95% CI =.01-.31). Pelsser et al. concluded, "Considering the small average ESs [effect sizes] PUFA supplementation is unlikely to provide a tangible contribution to ADHD treatment."

Putting all of this together, there are indications that individuals with ADHD may have lower levels of omega-3 PUFAs, and that omega-3 supplementation may slightly reduce symptoms of ADHD, but the evidence remains inconclusive, with at best small effect sizes. It is possible, but not yet demonstrated, that omega-3 PUFAs might produce good outcomes in a small subset of patients.

Jane Pei-Chen Chang, Kuan-Pin Su, Valeria Mondelli, and carmine M Pariante, "Omega-3 Polyunsaturated Fatty Acids in Youths with Attention Deficit Hyperactivity Disorder: a Systematic Review and Meta-Analysis of Clinical Trials and Biological Studies," Neuropsychopharmacology (2017),43(3): 534-545.
Donna Gillies, John KH Sinn, Sagar S Lad, Matthew J Leach, MelissaJ Ross, "Polyunsaturated fatty acids (PUFA) for attention deficit hyperactivity disorder (ADHD) in children and adolescents," Cochrane Database of Systematic Reviews (2012), DOI:10.1002/14651858.CD007986.pub2.
Elizabeth Hawkey and Joel T. Negg, "Omega-3 fatty acid and ADHD: Blood level analysis and meta-analytic extension of supplementation trials," Clinical Psychology Review(2014), 34(6), 496-505.
Laura LaChance, Kwame McKenzie, Valerie H. Taylor, and Simone N. Vigod, "Omega-6 to Omega-3 Fatty Acid Ratio in Patients with ADHD: AMeta-Analysis," Journal of the Canadian Academy of Child and AdolescentPsychiatry (2016), 25(2), 87-96.
Lidy M. Pelsser, Klaas Frankena, Jan Toorman, Rob Rodrigues Pereira, "Diet and ADHD, Reviewing the Evidence: A Systematic Review of meta-Analyses of Double-Blind Placebo-Controlled Trials Evaluating the Efficacy of Diet Interventions on the Behavior of Children with ADHD," PLOS ONE (January 25, 2017), 1-25.
Basant K. Puri and Julian G. Martins, "Which polyunsaturated fatty acids are active in children with attention-deficit hyperactivity disorder receiving PUFA supplementation? A fatty acid validated meta-regression analysis of randomized controlled trials," Prostaglandins, Leukotrienes and Essential Fatty Acids (2014), 90, 179-189.
Edmund J.S. Sonuga-Barke et al., "NonpharmacologicalInterventions for ADHD: Systematic Review and Meta-Analyses of RandomizedControlled Trials of Dietary and Psychological Treatments," American Journal of Psychiatry (2013),170:275-289.

Related posts

No items found.

Network Meta-analysis Explores Long-term Efficacy of Nonpharmacological Treatments for Improving Inhibitory Control in Children and Adolescents with ADHD

Background Info:

Executive functions include inhibitory control, working memory, and cognitive flexibility. Inhibitory control is the ability to suppress distractions and focus on goals, which is the main deficit in ADHD. 

Children and adolescents with ADHD often have off-task, unrelated thoughts and are easily distracted, limiting their sustained attention. This makes it difficult for them to focus on tasks and leads to impulsive behaviors that affect their daily life, academics, and social interactions. Improving inhibitory control in ADHD children and adolescents is essential. 

Stimulant medications are commonly used to treat ADHD. However, side effects like insomnia, loss of appetite, and headaches may make parents hesitant to use these medications for their children. 

Non-pharmacological treatments like cognitive training, behavior therapy, and physical exercise have gained attention for their lack of side effects. Research shows that some non-pharmacological methods can improve cognitive outcomes significantly, underscoring their potential in treating ADHD. 

Study:

A Chinese research team identified four key gaps in current research on non-pharmacological treatments for inhibitory control in children with ADHD: 

  • Existing meta-analyses seldom differentiate between short-term and long-term interventions.  
  • Most studies focus primarily on short-term effects and neglect evaluation of maintenance effects through follow-up assessments.  
  • New treatment methods, such as meditation and board games, have not been systematically assessed in meta-analyses for their impact on inhibitory control in children and adolescents with ADHD, leaving their effectiveness uncertain.  
  • Traditional meta-analysis does not tell us which intervention is most effective. Without this comparative analysis, it is difficult to rank efficacy. 

The team therefore performed a network meta-analysis of long-term randomized controlled trials (RCTs) to assess and rank the effectiveness of various non-pharmacological treatments on inhibitory control in children and adolescents with ADHD. 

The team included only RCTs relying on professional diagnoses of ADHD, excluding those based only on parent and teacher rating scales.  

The included studies measured inhibitory control using objective neurocognitive tasks, such as the Stroop test and the Go/No-Go test, to reduce potential subjective bias. Studies relying on parent- or teacher-reported questionnaires were excluded. 

Controls either received no intervention or placebo, such as watching running videos and attending history classes. 

Meta-analysis of 16 studies combining 546 participants found large short-term effect size improvements in inhibitory control from physical exercise. But the two studies with a total of 110 participants that performed a follow-up test reported only a small-to-medium effect size improvement. 

For cognitive training, a meta-analysis of fifteen studies totaling 674 participants reported a medium effect size of short-term improvement in inhibitory control. The ten studies with 563 participants that performed a follow-up test found only a small effect size improvement since treatment initiation. 

For behavioral therapy, meta-analysis of six studies encompassing 244 individuals likewise found a medium effect size short-term improvement in inhibitory control. In this case, however two studies combining 91 participants that performed a follow-up test reported that the medium effect size improvement was maintained. 

For neurofeedback, meta-analysis of seven studies encompassing 186 individuals found a small-to-medium effect size short-term improvement in inhibitory control. The only study that performed a follow-up test reported a small effect size improvement since treatment initiation. 

The two studies with a combined 44 individuals exploring board games found no significant improvement in inhibitory control. Likewise, the two studies combining 32 participants that explored meditation found no significant improvement in inhibitory control. 

There was no indication of publication bias. 

Conclusion:

The team concluded, “Existing evidence shows that physical exercise, behavior therapy, cognitive training, and neurofeedback can effectively improve the inhibitory control of children and adolescents with ADHD. However, meditation, EMG feedback, and board games did not significantly affect inhibitory control. Physical exercise has the best effect among all non-pharmacological treatments, but its impact will be weakened after intervention. Behavior therapy and cognitive training had a slightly lower effect, but they have a better maintenance effect.” 

Ultimately, the study results suggest that non-drug treatments can help children and teens with ADHD improve their ability to control their actions and stay focused. Some methods, like physical exercise, work well at first but may fade once the activity stops. Other methods, like behavioral therapy and cognitive training, may take a little longer to show results but can last longer and make a bigger difference over time. Ultimately, and most importantly, because this work did not study the symptoms of ADHD or its real-world impairments, it provides no reason to change current treatment practices for ADHD.

July 16, 2025

The Role of Serotonin in ADHD and Its Many Comorbidities

Serotonin is a key chemical in the body that helps regulate mood, behavior, and also many physical functions such as sleep and digestion. It has also been linked to how ADHD (attention-deficit/hyperactivity disorder) develops in the brain. This study looks at how serotonin may be involved in both the mental health and physical health conditions that often occur alongside ADHD.

It is well-established that ADHD is more than just trouble focusing or staying still. For many, it brings along a host of other physical and mental health challenges. It is very common for those with ADHD to also have other diagnosed disorders. For example, those with ADHD are often also diagnosed with depression, anxiety, or sleep disorders. When these issues overlap, they are called comorbidities. 

A new comprehensive review, led by Dr. Stephen V. Faraone and colleagues, delves into how serotonin (5-HT), a major brain chemical, may be at the heart of many of these common comorbidities.

Wait! I thought ADHD had to do with Dopamine–Why are we looking at Serotonin?

Serotonin is a neurotransmitter most often linked to mood, but its role in regulating the body has much broader implications. It regulates sleep, digestion, metabolism, hormonal balance, and even immune responses. Although ADHD has long been associated with dopamine and norepinephrine dysregulation, this review suggests that serotonin also plays a central role, especially when it comes to comorbid conditions.

The Study:

  • Objective: To systematically review which conditions commonly co-occur with ADHD and determine whether serotonin dysfunction might be a common thread linking them.

  • Method: The authors combed through existing literature up to March 2024, analyzing evidence for serotonin involvement in each comorbidity associated with ADHD.

  • Scope: 182 psychiatric and somatic conditions were found to frequently occur in people with ADHD.

Key Findings

  • 74% of Comorbidities Linked to Serotonin: Of the 182 comorbidities identified, 135 showed evidence of serotonergic involvement—91 psychiatric and 44 somatic (physical) conditions.

  • Psychiatric Comorbidities: These include anxiety disorders, depression, bipolar disorder, and obsessive-compulsive disorder—all of which have long-standing associations with serotoninergic dysfunction.

  • Somatic Comorbidities: Conditions like irritable bowel syndrome (IBS), migraines, and certain sleep disorders also showed a significant serotonergic link.

This research suggests that serotonin dysregulation could explain the diverse and sometimes puzzling range of symptoms seen in ADHD patients. It supports a more integrative model of ADHD—one that goes beyond the brain’s attention, reward and executive control circuits and considers broader physiological and psychological health.

future research into the role of serotonin could help develop more tailored interventions, especially for patients who don't respond well to stimulant medications. Future studies may focus on serotonin’s role in early ADHD development and how it interacts with environmental and genetic factors.

The Take-Away: 

This study is a strong reminder that ADHD is a complex, multifaceted condition. Differential diagnosis is crucial to properly diagnosing and treating ADHD. Clinicians' understanding of the underlying link between ADHD and its common comorbidities may help future ADHD patients receive the individualized care they need. By shedding light on serotonin’s wide-reaching influence, this study may provide a valuable roadmap for improving how we diagnose and treat those with complex comorbidities in the future. 

July 14, 2025

Undiagnosed ADHD May Be Undermining Diabetes Control in Adults with Type 1 Diabetes

Our recent study, published in the Journal of Clinical Medicine, aims to shed light on an under-recognized challenge faced by many adults with Type 1 diabetes (T1D): attention-deficit/hyperactivity disorder (ADHD) symptoms.

We surveyed over 2,000 adults with T1D using the Adult Self-Report Scale (ASRS) for ADHD and analyzed their medical records. Of those who responded, nearly one-third met the criteria for ADHD symptoms—far higher than the general population average. Notably, only about 15% had a formal diagnosis or were receiving treatment.

The findings are striking: individuals with higher ADHD symptom scores had significantly worse blood sugar control, as indicated by higher HbA1c levels. Those flagged as "ASRS positive" were more than twice as likely to have poor glycemic control (HbA1c ≥ 8.0%). They also reported higher levels of depressive symptoms.

As expected, ADHD symptoms decreased with age but remained more common than in the general public. No strong links were found between ADHD symptoms and other cardiometabolic issues.

This study highlights a previously overlooked yet highly significant factor in diabetes management. ADHD-related difficulties—such as forgetfulness, inattention, or impulsivity—can make managing a complex condition like T1D more difficult. The researchers call for more screening and awareness of ADHD in adults with diabetes, which could lead to better mental health and improved blood sugar outcomes.

Takeaway: If you or a loved one with T1D struggles with focus, organization, or consistent self-care, it may be worth exploring whether ADHD could be part of the picture. Early identification and support are crucial to managing this common comorbidity. 

July 10, 2025